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An Adaptive Difference Method for
Variable-Order Diffusion Equations
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Abstract. An adaptive finite difference scheme for variable-order
fractional-time subdiffusion equations in the Caputo form is studied.
The fractional-time derivative is discretized by the L1 procedure but
using nonhomogeneous timesteps. The size of these timesteps is cho-
sen by an adaptive algorithm to keep the local error bounded around a
preset value, a value that can be chosen at will. For some types of prob-
lems, this adaptive method is much faster than the corresponding usual
method with fixed timesteps while keeping the local error of the nu-
merical solution around the preset values. These findings turn out to be
similar to those found for constant-order fractional diffusion equations.
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1. Introduction

Fractional calculus has become a useful branch of Mathematics [6,21,34,36]
with a wide range of applications in Science and Engineering [22,23,42]. In
particular, fractional diffusion equations appear naturally as a useful way of
describing some stochastic processes leading to anomalous diffusion [33,42,
43]. When the diffusion process is normal, the mean square displacement 〈x2〉
of the diffusive entity (“particle” or “walker”) is proportional to the time t.
But in many instances of nature and social systems, one finds that 〈x2〉 ∝ tγ

with γ �= 1. In this case, the diffusion is anomalous. There is subdiffusion when
γ < 1 and superdiffusion when γ > 1. The value of the anomalous diffusion
exponent γ depends on the type of particle and medium in which the particle
moves. For example, one finds anomalous diffusion when a diffusing particle, a
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random walker, travels on disordered media [17,23]. Also, one finds anomalous
diffusion when the time τ between steps of the random walker (even in a
normal, no fractal, Euclidean medium) is a random variable drawn from a
heavy tail distribution ϕ(τ) ∼ τ−1−γ with 0 < γ < 1. This class of diffusive
systems is described by the so-called Continuos Time Random Walk (CTRW)
model which leads naturally to the fact that the probability density u(�r, t)
of finding a particle at �r at time t follows some class of fractional diffusion
equation. For example, for a large class of random walks in one dimension
with no reactions or source terms, the fractional partial differential equation
(FPDE) for u(x, t) is

∂

∂t
u(x, t) = 0D

1−γ
t LFP u(x, t) (1.1)

where 0D
1−γ
t is the Riemann–Liouville derivative defined by

0D
1−γ
t f(t) =

1
Γ(γ)

d
dt

∫ t

0

dτ
f(τ)

(t − τ)1−γ
(1.2)

and LFP is the Fokker–Planck operator [24,32,33]

LFP = Kγ
∂2

∂x2
− ∂

∂x
vγ(x, t). (1.3)

Here K(∂2/∂x2) is the diffusion term, (∂/∂x)vγ(x, t) is the advection term,
K is the anomalous diffusion coefficient, and vγ(x, t) is related to the external
force applied to the random walker. When v(x, t) = 0, one has 〈x2(t)〉 ∼ Ktγ

for large t, being 〈x2(t)〉 the mean square displacement of the walker. Strictly,
the right fractional operator in Eq. (1.1) is not the Riemann–Liouville de-
rivative but the Grünwald-Letnikov derivative. However, both operators are
equivalent for well-behaved solutions f(t) where limt→0

∫ t

0
dτ (t−τ)γ−1f(τ) =

0 [36]. This property is usually assumed. An alternative way of writing
Eq. (1.1) is

∂γ

∂tγ
u(x, t) = LFPu(x, t) (1.4)

where
∂γ

∂tγ
f(t) =

1
Γ(1 − γ)

∫ t

0

dτ
1

(t − τ)γ

df(τ)
dτ

(1.5)

is the Caputo derivative. When γ is constant, Eqs. (1.1) and (1.4) (in the
language of Ref.[43], the “modified” and “normal” form of the FPDE, respec-
tively) are equivalent. Since the value of the anomalous diffusion exponent γ
depends on the type of medium in which diffusion occurs, γ becomes a func-
tion of space and/or time in systems where the medium is spatially and/or
temporally heterogeneous [5,10,11,45]. In this case, the FPDE equation is
called variable-order FPDE (VOFPDE). The equation is usually called frac-
tional diffusion (or subdiffusion) equation when 0 < γ(x, t) < 1. This is the
equation on which we are going to focus, although our procedure is also valid
for the so-called diffusion-wave equation in which 1 < γ(x, t) < 2 [31,41].

As for standard partial differential equations, it is not possible to find
analytical solutions for the FPDEs in many cases (especially for VOFPDEs)
and one has then to resort to numerical methods. An important class of
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these methods is finite difference methods [25,27]. Some comments about
these methods when applied to FPDE are in order. First, let N be the num-
ber of timesteps of size τi required by the finite difference method to provide
the solution u(x, t) at time t, i.e., t =

∑N
i=1 τi. The computation time re-

quired by these methods is known to scale as N2, which calls for methods
for which N be as smaller as possible. A way to reach this goal is using a
high-order method so that its accuracy is good even for relatively large val-
ues of the timestep; see, e.g., Refs. [12,16,27,46–48,51] and references there
in. Second, the singular nature of the integro-differential derivatives around
t = 0 often manifests in the rapid change of the solution u(x, t) around this
point, specifically, it manifests in the singularity of the first time derivatives
of u(x, t) around t = 0. A way of seeing this is recalling that the solution
of Eqs. (1.1) and (1.4) can be often written as superposition of subdiffusive
modes u(x, t) =

∑
φn(x)Eγ(−cn tγ) where φn(x) are the eigenfunctions of

the Fokker–Planck operator LFP and Eγ(·) is the (one-parameter) Mittag-
Leffler function [33,37]. For normal diffusion, γ = 1, the Mittag-Leffer func-
tions become exponentials and then one recover the standard expansion of
the solution u(x, t) in terms of normal diffusive modes [4]. But, unlike the
exponential function, the Mittag-Leffler function has singular derivatives at
t = 0. This is easy to see recalling that Eγ(z) =

∑∞
k=0 zk/Γ(1 + γk), which

implies that the n-th derivative of Eγ(−cn tγ) goes as tγ−n for short times
(see more details in [44]). This implies that the solution u(x, t) changes very
fast for short times. This generic behavior of the solutions of the FPDEs is
often overlooked when the numerical methods are tested because often the
FPDE equations chosen for this task are carefully build adding (often awk-
ward) extra terms (force terms) so that the equations have simple solutions
(usually in the form of a polinomial in t). Unfortunately, in many cases, this
is the price one has to pay to be able to compare numerical solutions with ex-
act solutions. Finally, note that Eγ(−cte tγ) ∼ t−γ for large t, which implies
that often the solution u(x, t) of FPDE changes very slowly for large times.

Summing up, typically the problems we face involve at least two quite
different timescales as the solution u(x, t) of the fractional diffusion equations
changes quite rapidly for short times and very slowly for long times. This
calls for the adaptation of the size of the timesteps τi to this behavior: one
should choose small timesteps when the solution changes rapidly to follow the
changes in the solutions and large timesteps when the solution evolves slowly.
This flexibility in choosing the sizes of the time intervals at our disposal
can be exploited in different ways, in particular, it can be used to follow in
detail the evolution of the solution in a certain time interval that interest
us. This procedure has been recently employed for FPDE of constant order
[8,9,18,26,37,40,44,49,50,52,53]. In a particular subclass of these methods,
the choice of the stepsizes is made taking into account the behavior of the
solution on the fly, that is, taking into account the behavior of the solution
that the numerical method is obtaining in every timestep [18,50]. In this
paper, we explore this approach, i.e., variable timesteps plus an adaptive
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algorithm, for variable-order FPDEs (VOFPDEs) of the form

∂u = F (x, t) (1.6)

with ∂ ≡ ∂γ/∂tγ − LFP and γ = γ(x, t). Therefore, this paper can then
be seen as a generalization to variable-order FPDEs of the procedures put
forward in Refs. [49,50] for constant-order FPDEs. Some recent numerical
methods for solving VOFPDEs can be found in Refs. [1,3,15,28]; see also the
recent reviews by Sun et al. [45] and Patnaik et al. [35] on physical models,
numerical methods, and applications of VOFDEs.

Finally, what is relevant in this article is how we deal with the fractional
operator of Eq. (1.6); our treatment of the Fokker–Planck operator is fairly
standard. Therefore, for the sake of simplicity, we will not consider the ad-
vection term in the Fokker–Planck operator (although its inclusion would be
straightforward). Thus, the equation we will consider in this paper is Eq. (1.6)
with LFP = K∂2/∂x2:

∂γ(x,t)

∂tγ(x,t)
u(x, t) = K

∂2

∂x2
u(x, t) + F (x, t). (1.7)

This paper is organized as follows. In Sect. 2, we present the numerical
scheme and the adaptive algorithm we use. In Sect. 3, we discuss some of
the properties and qualities of our adaptive method by applying it to several
problems. The paper is closed in Sect. 4 with some concluding remarks.

2. The Numerical Scheme

The numerical scheme we discuss in this paper has two main components: a
difference method able to work with non-uniform timesteps and an algorithm
that adapts the size of the timesteps to the behavior of the solution. We
next present the difference method and left the discussion of the adaptive
algorithm for the final part of this section.

2.1. The Difference Method

The difference method we use in this paper is a straightforward generaliza-
tion to variable-order FDEs of the method discussed in [49,52] for FDEs of
constant order. It will be obtained by discretizing the operator ∂ of Eq. (1.6)
by means of the three-point centered formula of the Laplacian and by means
of a generalization of the L1 formula for non-uniform meshes of the Caputo
derivative.

As is standard for finite difference methods, one looks for the solution
u(xj , tm) ≡ um

j of the continuous integro-differential equation at the nodes
(xj , tm) of a mesh that covers the space-time region where one wants to
find the approximate numerical solution. We start discretizing the Caputo
derivative:
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∂γu

∂tγ

∣∣∣∣
(xj ,tn)

=
1

Γ(1 − γn
j )

n−1∑
m=0

∫ tm+1

tm

dt′

(t − t′)γn
j

∂u

∂t′

=
1

Γ(1 − γn
j )

n−1∑
m=0

um+1
j − um

j

τm+1

∫ tm+1

tm

dt′

(t − t′)γn
j

+ Rj(tn)

=
1

Γ(2 − γn
j )

n−1∑
m=0

Tm,n
j

um+1
j − um

j

τm+1
+ Rj(tn) (2.1)

where t0 = 0, n ≥ 1, τm ≡ tm − tm−1, γn
j ≡ γ(xj , tn),

Tm,n
j =

(tn − tm)1−γn
j − (tn − tm+1)1−γn

j

τm+1
, m ≤ n − 1, (2.2)

T 0,1
j = (t1 − t0)−γ1

j , and Rj(tn) is the temporal truncation error. This is
generalization of the L1 formula [13,34] for non-uniform meshes of the Caputo
derivative. It is easy to see [49] that Rj(tn) is bounded by a term of order

t
1−γn

j
n τmax with τmax = max1≤m≤n τm+1. An improved bound of Rj(tn) when

u(·, t) ∈ C2[0, tn] is [τ2
n/(2 − 2γ) + τ2

max/8)]τ−γ
n max0≤t≤tn ∂2u(·, t)/∂t2 [52].

Regarding the spatial discretization, we use a mesh of fixed size, xj+1 −
xj = Δx for all j, and we discretize the Laplacian operator ∂2/∂x2 by means
of the three-point centered formula:

∂2u(x, t)
∂x2

∣∣∣∣
(xj ,tn)

=
un

j+1 − 2un
j + un

j−1

(Δx)2
+ Rn(xj) (2.3)

with Rn(xj) = O(Δx)2.
Introducing (2.3) and (2.1) in the equation that we want to solve,

Eq. (1.7), neglecting the truncation errors Rn(xj) and Rj(tn), and reordering
the terms, we obtain the finite difference scheme we were looking for:

− Sn
j Un

j+1 + (1 + 2Sn
j )Un

j − Sn
j Un

j−1 = M
[
U

(n)
j

]
+ F̃n

j (2.4)

where

Sn
j = Γ(2 − γn

j )K
(tn − tn−1)γn

j

(Δx)2
. (2.5)

M
[
U

(n)
j

]
= Un−1

j −
n−2∑
m=0

T̃m,n
j

[
Um+1

j − Um
j

]
, (2.6)

T̃m,n
j = (tn − tn−1)γn

j Tm,n
j , F̃n

j = (tn − tn−1)γn
j F (xj , tn), and Un

j is the
numerical estimate of the exact value un

j . This implicit finite difference scheme
is in the form of a tridiagonal system and can, therefore, be solved easily and
efficiently. It is also unconditionally stable and convergent. This can be proved
by means of a straightforward extension of the arguments used in Ref. [49]
(and also in Ref. [52]) for the case γ(x, t) = cte. In fact, if one compares the
present scheme (2.4) with that of Ref. [49], one sees that the only difference is
that the quantities Sn

j and Tm,n
j depend here on j. But, for our purposes, this

fact is not relevant and so the procedures employed in Ref. [49] can be applied
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directly to the present variable-order scheme to show that it is convergent
and unconditionally stable. We will not repeat these arguments here.

2.2. The Adaptive Algorithm

In this paper, the dynamical way (the adaptive algorithm) we use to choose
the size of the timesteps is a step-doubling algorithm [38,40] that we called
the “trial & error” method in Ref. [50]. Assuming the the values of U

(m)
k with

0 < m < n− 1 have been already evaluated, in this method (see more details
in Refs. [40,50]):

• The solutions at the time tn of the n-th timestep are evaluated twice,
first one gets the solution U

(n)
k employing a full step Δn = tn − tn−1

and then the solution Û
(n)
k using two half steps of size Δn/2.

• The “difference” E(n) = max
allk

∣∣∣U (m)
k − Û

(n)
k

∣∣∣ between these two numerical

estimates of the solution is used as an indicator of the local error of the
numerical method.

• The final size of E(n) is kept around a prefixed tolerance τ by adjusting
the value of Δn: if E(n) is larger that the tolerance, we halve the size of
Δn until E(n) < τ , but if E(n) is smaller that the tolerance, we double
the size of Δn until E(n) > τ , and we take as the final Δn the last one
for which E(n) was smaller than the tolerance.

Other adaptive algorithms that work well for non-fractional (ordinary)
problems could be extended to our FPDE. For example, predictive meth-
ods, based on the (often assumed) dependence of local error on the size of
timesteps, have been extended to FPDE [50]. Recently, Jannelli [18] has pro-
posed an adaptive procedure for FPDE that is a generalization of an adaptive
procedure developed for stiff problems described by ordinary differential equa-
tions. We might also be interested in an accurate evaluation of the solution
within a given time interval (or time regime) where some quantity (say the
variable-order exponent) exhibits a certain property; in this case, the adap-
tive algorithm should adapt the size of the timesteps to carefully explore this
time interval. Finally, one might be more interested in accurately evaluating
some quantity (a conserved quantity, for example) than in evaluating the
solution; the adaptive algorithm should then be designed accordingly.

3. Results

In this section, we are going to discuss some of the properties and advantages
(and disadvantages) of our adaptive method applying it to four different prob-
lems with VOFDEs. In the first example, the fractional derivative depends
only on time and has a simple exact solution. This case will serve as testbed
to study the precision and efficiency (required CPU time) of the method. In
the second and third example, γ only depends on the position x. The second
example illustrates the case of a sudden change in the solution for small t,
while in the third example, we study a problem with a solution that goes
toward a nonzero stationary solution. In the fourth and final example, γ is
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a periodic function similar to a pulsating function. This example shows how
the adaptive method adapts by periodically changing the size of the time
intervals.

3.1. Case 1

The first problem we consider has a very simple and well-behaved solution,
namely,

u(x, t) =
(
2 − e−t

)
sin x. (3.1)

Taking into account that [14]

∂γ

∂tγ
eλt = λ t1−γ E1,2−γ(λt) (3.2)

for 0 < γ ≤ 1, one finds that Eq. (3.1) is solution of the FPDE

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2
+ F (x, t), (3.3a)

u(x, 0) = sinx, 0 ≤ x ≤ π, (3.3b)
u(0, t) = u(π, t) = 0, (3.3c)
F (x, t) =

[
2 − e−t + t1−γ E1,2−γ(−t)

]
sin x, (3.3d)

where E1,2−γ(·) is the two-parameter Mittag-Leffler function [36]. In this
example, we consider the VOFPDE in which γ ≡ γ(t) = (1 + e−t) /2, that is,
a VOFPDE where the equation goes from a standard, non-fractional, PDE
with γ = 1 for t = 0 to a strongly anomalous diffusive equation with γ = 1/2
for t → ∞.

In Fig. 1, we compare the analytical solution (solid line) at the mid-
dle point, u(π/2, t), with the numerical solution for three different values of
the tolerance τ . We see that the agreement of the numerical solutions with
the exact one is excellent. We also note that, as expected, the size of the
timesteps changes according to the behavior of the solution: for short times,
the timesteps are small because the solution changes rapidly, which leads to
the noticeable cluttering of points in this time range; on the other hand, for
large times, the timesteps are very large because the solution hardly changes.
In fact, we know that u(x = 1/2, t) goes asymptotically toward the constant
value 2 for long times. This implies that the numerical estimate of the solu-
tion will be very accurate even for very large values of the timesteps. This
calls for limiting the maximum size of the timestep one is ready to accept
because, otherwise, the timesteps Δnt could reach unreasonable large values
and then the sampling of the solution could be too scarce. This phenomenol-
ogy (and the consequent procedure of limiting the maximum allowed time
interval) is parallel to that of the adaptive methods for ordinary differential
equations [38].

It is also noticeable that the number of symbols that appear in Fig. 1
is larger for smaller values of the tolerance, which means that, in general,
the larger the tolerance, the larger the timesteps. This makes sense as one
can use larger timesteps if one is ready to pay the price of larger numerical
errors. This can be clearly seen in the inset of Fig. 1 where the numerical
error at the midpoint, |u(xj = 1/2, tn) − Un

j |, is plotted: typically, the larger
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Figure 1. u(π/2, t) versus t for the problem (3.3) of Case
1. The symbols are the numerical solutions provided by the
adaptive method with tolerances τ = 10−3 (stars), τ = 5 ×
10−3 (squares) and τ = 10−4 (circles). In all cases, Δx =
π/40. The line is the exact analytical solution. The numerical
errors |Un

j − u(xj = 1/2, tn)| are plotted in the inset. As
reference, we have also included the numerical errors when
fixed timesteps of size 0.01 are used (triangles). For the sake
of readability, we have only plotted one of every 10 points in
this case

the τ , the larger the error. For times larger than, say, t = 5, the solution is
close to its asymptotic value u = 2 and the error becomes quite small. As
reference, we have also plotted the numerical errors when a fixed timestep
of size Δn = 0.01 is used. Except for small values of time, the errors of
the adaptive method are similar (or smaller) than those of the method with
fixed timestep, and, remarkably, this is reached with a huge improvement in
the computation time. This is clearly seen in Fig. 2 where we compare the
CPU time required by the method with fixed timesteps and the method with
adaptive timesteps (with three different values of the tolerance) to evaluate
the numerical solutions. We see that for times t � 2, the adaptive method is
by far the best option.

The CPU times in Fig. 2 are normalized times: they are not given in
seconds but in units of T50, which is the CPU time employed by the method
with fixed timesteps to get the solution of problem (3.3) when 50 timesteps are
used (in our computer T50 ≈ 1.3 s). Thus, the normalized values TCPU(t) we
report here should be roughly independent of the computer one uses. Notice
that, as expected, TCPU ∝ t2 for the method with fixed timesteps (which
comes from the fact that the computation time scale as the N2, with N
being the number of timesteps). However, we see that the CPU time grows
much more slower for the adaptive method: TCPU ∼ tβ with β ≈ 1/2 for



MJOM An Adaptive Difference Method Page 9 of 19   145 

Figure 2. Normalized computational time TCPU(t) required
by the fixed-step method with Δn = 0.01 (triangles) and by
the adaptive method with τ1 = 10−3 (stars), τ2 = 5 × 10−4

(squares) and τ3 = 10−5 (circles). They are averaged values
over five runs. In all cases, Δx = π/40. As reference, we have
also plotted two lines corresponding to TCPU ∼ t2 (solid line)
and TCPU ∼ t1/2 (dashed line)

t � 2. This behavior of TCPU is very similar to the one observed for the case
with constant γ we studied in Ref. [50], although the relationship TCPU ∼ tβ

with β constant is not as good here as we found in Ref. [50] for the case
with constant γ. This is a consequence of the fact that we consider here a
variable-order equation: in Ref. [50], we found that β increases when so does
γ, so that a power fit for the CPU times with β constant cannot be perfect
if γ varies with the time. Finally, we observe in Fig. 2 that, as expected, the
adaptive method is faster when the tolerance increases.

3.2. Case 2

Now we consider a case where the order of the fractional derivative only
depends on the position, i.e., γ(x, t) = γ(x). The problem is

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2
, (3.4a)

u(x, 0) = sinx, 0 ≤ x ≤ π, (3.4b)
u(0, t) = u(π, t) = 0, (3.4c)

where the derivative order is the periodic function γ(x) =
[
1 + 8 cos2(2x)

]
/10.

The solution obtained with the adaptive method with Δx = π/40 and tol-
erance τ = 10−4 is shown in Fig. 3 for four different times. The solution is
initially a sine function, u(x, 0) = sinx, but very quickly changes its form to
a short of rounded triangle: see the panel for t = 7.5 × 10−3. After a while,
the form of the solution is again similar to the initial one (see the panel for
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Figure 3. Adaptive numerical solution u(x, t) of the problem
(3.4) (Case 2) with Δx = π/40 and τ = 10−4 for times a
t = 0.0075, b t = 0.507, c t = 3.77 and d t = 1013 (solid
lines). As reference, in panel (a), we have also plotted u(x, 0)
(dashed line) and the order γ(x) of the fractional derivative
(dash-dotted line)

t = 0.5075). From here on, the form of the solution goes toward curve similar
to an isosceles trapezium with slowly decreasing height. Although one has to
go to times as large as t ∼ 103 to see this with clarity (see the four panel),
these large times can easily be reached by our adaptive method; for example,
only 134 timesteps were required to reach the time t = 1013. The fact that
the central part of the solution becomes flatter and flatter as time increases
is due to the dependence of γ on x. This example shows the usefulness of
adaptive methods if the solution changes very quickly for very short times
(so that one has to use very small timesteps to tracks down the solution
in this time regime) and one has to go to long times (and then use large
timesteps) to be able to appreciate the final form of the solution. This exam-
ple also shows that the VOFDE solution is qualitatively different from the
corresponding FDE solution with gamma constant, a case where the solution
is always proportional to sin(x).

Figure 4 shows the (estimated) error of our numerical method at the
midpoint x = π/2. Since this VOFDE problem lacks an exact solution, we
compute the error as |Un

j − Ũn
j |, where Un

j is the estimated solution at the
midpoint with Δx = π/40 and tolerances τ = 10−3, τ = 5 × 10−4, and
τ = 10−4. The quantity Ũn

j corresponds to the numerical solution at the
midpoint obtained with Δx = π/160 and τ = 10−6. The rationale behind
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Figure 4. Estimate |Un
j − Ũn

j | of the error of the adaptive
numerical solution u(x, t) of the problem (3.4) (Case 2) when
Δx = π/40 and τ = 10−3 (stars), τ = 5 × 10−4 (squares),
and τ = 10−4 (circles)

this procedure is that Δx and τ are so small in the latter case that the true
error |Un

j − u(x = π/2, tn)| can be well approximated by |Un
j − Ũn

j |. We
observe that the behavior of the error is very similar to that of Case 1 (see
the inset in Fig. 1). In particular, we observe that the error is significantly
smaller for smaller tolerances and that, after a short initial growth phase, it
gradually decreases to values closer to the specified tolerance.

3.3. Case 3

Here, we will also consider a case with a position-dependent fractional-order
derivative but now with nonhomogeneous boundary conditions, which im-
plies that the solution goes, albeit very slowly, toward a nonzero stationary
solution.

The problem we consider is

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2
, (3.5a)

u(x, 0) = (x + 1)(1 − x/10), 0 ≤ x ≤ 10, (3.5b)
u(0, t) = 1, u(10, t) = 0, (3.5c)

with γ = γ(x) = 2x(1 − x/10)/5. The solution obtained with the adaptive
method with Δx = 0.01 and tolerance τ = 10−4 is shown in Fig. 5 for several
times. We see that, initially, the solution changes very fast: the change of
the solution from t = 0 to t ≈ 3 is similar to the change from t ≈ 25 to
t ≈ 90. This evolution is increasingly slower: note that even for t = 1350,
the solution has not yet reached the stationary solution. This behavior is at
odds with the behavior of the solutions for the standard normal diffusion
problem in which γ = 1. The solutions obtained by means of the adaptive
method for this case are also plotted in Fig. 5 (dashed lines). In particular,
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Figure 5. Adaptive numerical solution u(x, t) of the prob-
lem (3.5) (Case 3) with Δx = 0.01 and τ = 10−4. The solid
lines represent the solution for, from top to bottom, t =
0, 3.8, 9.6, 24.8, 93.0 and 1350 (black, green, pink, red, blue,
and orange lines, respectively) for γ(x) = (2/5)x(1 − x/10)
(dash-dotted line). The dashed lines are the solutions for the
normal diffusion problem (i.e., γ = 1) for, from top to bot-
tom, t = 3.8, 9.6, 24.9 and 91.8 (green, pink, red and blue
lines, respectively). This last line overlaps the line corre-
sponding to the final stationary solution, which for both γ
functions is the thin straight line going from u = 1 to u = 0
(color figure online)

we see that the rates of convergence of the solutions toward the stationary
solution are vastly different: the solution for γ = 1 overlaps the stationary
solution already for t ≈ 90 whereas the solution for γ variable is clearly
different from the stationary solution even for times as large as t = 1350. This
phenomenology shows us once again the convenience of numerical methods
with variable timesteps for solving VOFDPEs.

Figure 6 shows the (estimated) maximum error of our adaptive numer-
ical method for several tolerances. Again, since this VOFDE problem lacks
an exact solution, we estimate the error of the adaptive numerical algorithm
as maxj |Un

j − Ũn
j |, where Un

j is the numerical solution for Δx = 1/4 and
tolerances τ = 10−3, τ = 5 × 10−4, and τ = 10−4. The quantities Ũn

j are
the numerical solution when Δx = 1/16 and τ = 10−6. These latter val-
ues of Δx and τ are so small that we can safely estimate the true error
|Un

j − u(x = π/2, tn)| by |Un
j − Ũn

j |. Again, we observe that the behavior of
the error is very similar to that of Case 1 and Case 2. Errors are significantly
smaller for small tolerances and have a tendency to decrease toward values
closer to the tolerance.
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Figure 6. Estimate maxj |Un
j − Ũn

j | of the error of the adap-
tive numerical solution u(x, t) of the problem (3.5) (Case
3) when Δx = π/40 and τ = 10−3 (stars), τ = 5 × 10−4

(squares), and τ = 10−4 (circles)

3.4. Case 4

Now we consider a problem where the variable-order fractional derivative γ
is a periodic function. The problem is

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2
, (3.6a)

u(x, 0) = sinx, 0 ≤ x ≤ π, (3.6b)
u(0, t) = 1, u(π, t) = 0, (3.6c)

where γ = γ(t) = dn(K(m)t/2,m), m = 0.99, K(·) is the elliptical integral
of first kind and dn(·) is the denam Jacobi elliptic function. With this choice,
γ(t) is a periodic function of period 4 with flat valleys (i.e., with relatively
small changes in the slope of the curve) around t = 2 + 4n with n = 0, 1, . . .
and sharp peaks around 4n with n = 0, 1, . . . (see Fig. 7). The exact solution
of this problem has the form x(t) = A(t) sin x. In Fig. 7, we plot the numerical
estimate of A(t) obtained by the present adaptive method with Δx = π/40
and tolerance τ = 10−4. It is interesting to see how the amplitude of the solu-
tion syncs with γ(t). This example shows us again that the adaptive method
chooses the timesteps according to the behavior of the solution employing
large timesteps when the curvature is small and short timesteps otherwise:
notice that the points accumulate around t ≈ 4n while they scatter around
t ≈ 2+4n. This implies an optimization of the number of timesteps required
while maintaining the precision of the numerical solution. However, after the
first few periods, the method is somewhat unsatisfactory as it continues to
evaluate the optimal values of the timesteps period after period when they
are essentially the same in each period. Of course, in these cases, one could
stop this waste of computation time by stopping the adaptive procedure and
just use (or at least use as the first trial timestep) the corresponding timestep
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Figure 7. Amplitude A(t) of the solution u(x, t) = A(t) sin x
of the problem (3.6) (Case 4). The points correspond to the
numerical estimate A(tn) obtained by means of the present
adaptive method with Δx = π/40 and τ = 10−4. The con-
tinuous thin line through these points is an aid to the eye.
For reference, we have also plotted the order of the fractional
derivative γ(t) (dash-dotted line)

Figure 8. Estimate |Un
j − Ũn

j | of the error at the midpoint of
the adaptive numerical solution u(x, t) of the problem (3.6)
(Case 4) when Δx = π/40 and τ = 10−3 (stars), τ = 5×10−4

(squares), and τ = 10−4 (circles)

from the previous period: Δn ≈ Δm with tn = tm +T , where T is the period
of the solution (T = 4 in our example).

Figure 8 shows the (estimated) error of our adaptive numerical method
at the midpoint x = π/2, i.e., the error in the value of A(t). Since this
VOFDE problem has no exact solution, we estimate the true error |Un

j −u(x =
π/2, tn)| by |Un

j − Ũn
j |. Here Un

j is the numerical solution at the midpoint
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for Δx = π/40 and tolerances τ = 10−3, τ = 5 × 10−4, and τ = 10−4, while
Ũn

j is the numerical solution at the midpoint for Δx = π/160 and τ = 10−6.
Again, we see that the errors shrink significantly as the tolerance decreases,
but now the time evolution of the error is different from that of cases 1–3.
In those cases, the error went roughly monotonically to values close to the
tolerances, but now the periodic nature of the solution is reflected in the
roughly periodic behavior of the errors.

4. Conclusion

A previous finite difference adaptive method [50] designed to solve some
constant-order FDEs has been generalized to make it applicable to the variable-
order version of these FDEs [see Eq. (1.4)]. The method has two main ingre-
dients. First is a finite difference scheme able to work with variable timesteps.
In this paper, we have used a scheme based on the L1 discretization of the
Caputo fractional-time derivative as well as the standard three-point centered
discretization formula of the spatial derivative. The scheme is uncondition-
ally stable. The second ingredient is a algorithm for choosing the size of
the timesteps. Here we have used a step-doubling algorithm to keep the nu-
merical truncation error to values of the order of a quantity (the tolerance)
that we preset. A characteristic of the FDEs is that their solutions typically
show very disparate rates of change, generally with very fast changes for
small times and very slow changes (“aging”) for large times. The presence
of very different temporal regimes is particularly pronounced in the FDEs
with variable-order γ. This is because, in addition to the already character-
istic behavior of the rates of change of the FDEs mentioned above, there is
the temporal and spatial variability resulting from the temporal and spatial
dependence of the order γ(x, t) of the FDEs. For this type of behavior with
such different time scales, finite difference methods with fixed timesteps are
doomed to be very inefficient: either they overlook what the short-time solu-
tion is like if, to describe the long-time solutions, a very large the timestep
is chosen, or they cannot describe the solution for long times if, to describe
the solutions for short times, the timestep is chosen too small. The adaptive
difference method we have presented overcomes these difficulties by changing
the size of the timesteps according to the behavior (the rate of change) of
the solutions. In this way, the solution of the problem is not only obtained
with an accuracy that can be chosen freely, but is also achieved very effi-
ciently with CPU times that, in many cases, are much smaller than the CPU
times required by the corresponding standard method that uses a constant
timestep.

The present method can be extended in at least two directions related
to its two main ingredients. Another finite difference scheme with variable
timesteps could be used by replacing the L1 discretization by another dis-
cretization formula (e.g., by the L2, L2-1σ or L1-2 formulas [2,13,34]) and,
also, a different algorithm could be used to choose the size of the timesteps
[7,18,38]. Work is in progress along these lines.
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