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Gaseous diffusion as a correlated random walk
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The mean-square displacement per collision of a molecule immersed in a gas at equilibrium is given by its
mean-square displacement between two consecutive collisions (mean-square free path) corrected by a prefactor
in the form of a series. The nth term of the series is proportional to the mean value of the scalar product r1 · rn,
where ri is the displacement of the molecule between the (i − 1)-th and ith collisions. Simple arguments are
used to obtain approximate expressions for each term. The key finding is that the ratio of consecutive terms
in the series closely approximates the so-called mean persistence ratio. Exact expressions for the terms in the
series are considered and their ratios for several consecutive terms are calculated for the case of hard spheres,
showing an excellent agreement with the mean persistence ratio. These theoretical results are confirmed by
solving the Boltzmann equation by means of the direct simulation Monte Carlo method. By summing the series,
the mean-square displacement and the diffusion coefficient can be determined using only two quantities: the
mean-square free path and the mean persistence ratio. A simple and an improved expression for the diffusion
coefficient D are considered and compared with the so-called first and second Sonine approximations to D as well
as with computer simulations of the Boltzmann equation. It is found that the improved diffusion coefficient shows
very good agreement with simulation results over all intruder and molecule mass ranges. When the intruder mass
is smaller than that of the gas molecules, the improved formula even outperforms the first Sonine approximation.
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I. INTRODUCTION

The Chapman-Enskog solution of the Boltzmann equa-
tion is the most successful and well-known method for
determining the transport coefficients of molecular gases [1].
This well-studied procedure assumes the existence of a nor-
mal solution where all the space and time dependence of
the velocity distribution function f occurs only through a
functional dependence on the hydrodynamic fields. This func-
tional dependence can be made more explicit when the spatial
gradients are small. In this situation, f is written as a series.
expansion in powers of the spatial gradients of the hydrody-
namic fields (density, mean flow velocity, and temperature):
f = f (0) + f (1) + f (2) + · · · . Here f (0) is the local version of
the Maxwell-Boltzmann distribution function (zeroth order in
gradients), f (1) is of first-order in gradients (Navier-Stokes
order), f (2) is of second order in gradients (Burnett order),
and so on.

Unfortunately, within the Chapman-Enskog procedure, one
has to be ready to pay the price of dealing with a mathemat-
ically complex and not very intuitive method. On the other
hand, since the beginning of the kinetic theory of gases with
Maxwell, Stefan, Boltzmann, and Meyer [2], there has been
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a primary approach to address the study of transport proper-
ties of gases, namely, the mean-free-path (MFP) theory. This
theory is much simpler and more intuitive than the Chapman-
Enskog theory. This explains its use in many textbooks as
an introductory method for studying transport properties in
gases [3,4] and why is sometimes referred to as the elementary
kinetic theory of gases.

In the elementary kinetic theory, the molecules are treated
as masses of negligible volume (point particles) in constant
random motion. They experience negligible intermolecular
forces except during collisions, which justifies the concept
of a free path between collisions. However, this approach
suffers from some shortcomings: (i) its results are not always
accurate, (ii) its arguments are in many occasions qualitative
and highly debatable, and (iii) there is no general systematic
way to improve its approximations [1,5]. Notwithstanding,
numerous researchers have shown that many of these limita-
tions can be lessened and that a free path approach can yield
good predictions on the diffusion of gases while retaining its
ability to offer insights into the underlying physical mecha-
nisms [5–9].

In this paper we consider the problem of diffusion of an
intruder in a dilute gas at equilibrium (intruder and particles
of the gas are in general mechanically different, i.e., they can
differ in mass and size). In our approach, we treat the diffusion
process of a molecule (or intruder) in the gas as a random-
walk problem. In other words, we view this diffusion problem
as the result of a random process in which the molecule is, or
behaves like, a random walker moving with steps ri of random
size and direction. These steps (also referred to as flights)
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simply represent displacements of the molecule (or walker)
between consecutive collisions. Alternatively, employing the
classic terminology, they are recognized as the free paths. In
this paper we calculate the diffusion coefficient by evaluat-
ing the mean-square displacement of the molecule (random
walker). Authors such as Yang [6], Furry [5], Pitkanen [7],
and Monchick [8] explored this avenue many years ago. In
particular, if one assumes that the steps ri are uncorrelated
[i.e., 〈ri · ri+k〉 = 0, where 〈· · · 〉 denotes an average], then
one finds a very simple expression for the diffusion coefficient
given by [3,4]

D ≡ DeKT = λv̄

d
, (1)

where λ and v̄ are the mean free path and the average ve-
locity between two successive collisions, respectively, of the
molecule, and d is the dimensionality of the system. In Eq. (1),
the subscript eKT means that the diffusion coefficient has been
evaluated within the elementary kinetic theory. Unfortunately,
the expression (1) is quite inaccurate. This is primarily due to
the assumption that the steps are uncorrelated, which is a sig-
nificant oversimplification. On the contrary, when molecules
collide they exhibit a strong tendency to continue in a di-
rection similar to the one they had before the collision (i.e.,
〈ri · ri+k〉 > 0). This is the “persistence” of collisions, a fact
employed in the past to improve the expression (1) [10,11].

Thus, for the reasons mentioned before, we will consider
in this paper the diffusion of an intruder in a gas at equilib-
rium as a random walk with correlated steps (flights). We
will show how the inclusion of these sort of correlations
in an approximate and simple way yields an expression for
the diffusion coefficient D that is fully consistent with the
classical formula derived by Jeans [11] taking into account
the persistence. We will subsequently extend our discussion
and propose an improved expression of D. This new form
of the diffusion coefficient turns out to be equivalent to an
expression mentioned but not developed in the work of Jeans
[11]. It should be noted that the formulas for the coefficient
D reported in this paper have been derived in a different,
independent, and, in our opinion, more compelling approach
than the ones displayed in the work of Jeans [11]. This is
one of the new added values of the present contribution. The
key point in our methodology is the evaluation of the mean
value of the projection of ri+k over ri, i.e, 〈ri · ri+k〉, which
constitute the terms appearing in the series that leads to the
diffusion coefficient. The evaluation of 〈ri · ri+k〉 will allow us
to estimate the decorrelation length; it represents the distance
that the random walker has to travel to lose the memory of
the size and direction of its initial step. In this work, we
focus on a hard-sphere gas as the specific system to apply our
methodology. However, any other type of interaction could
have been considered as long as the conditions for a free path
description are met.

It is also interesting to note that, as shown by Monchik
and Mason [8,12], there exists a very close relationship be-
tween the results derived from the Chapman-Enskog and MFP
theories. It turns out that an integral equation for the veloc-
ity distribution function coincides with the integral equation
verifying the Chapman-Enskog approximation f (1) when con-
sidering the limit of infinitely many collisions in the MFP

theory. However, Monchik and Mason [12] pointed out that
the velocity distributions corresponding to the two theories
differ slightly because of the use of slightly different auxiliary
conditions.

The plan of the paper is as follows. In Sec. II, we present
the diffusion of an intruder in a dilute gas at equilibrium
as a random-walk problem. We calculate the mean-square
displacement and the diffusion coefficient as an infinite series
(the collisional series) with terms of the form 〈r1 · rk〉. In
Sec. III, we make some simple approximations to estimate
the value of each term 〈r1 · rk〉 in this series. We then sum
the series and obtain the formula proposed by Jeans [11] for
the diffusion coefficient D. The expression of D is improved
in Sec. IV by incorporating the exact value of the mean-
square free path 〈r2

1〉. The general formulas for evaluating
the averages 〈r1 · rk〉 in terms of the collision frequency and
the so-called transition rate are developed in Sec. V. We
use these expressions to compute the first few terms of the
collisional series for hard spheres. Notably, we find that the
quotient of the successive terms of this series is very well
approximated by the mean persistence ratio. To gauge the
accuracy of our expressions for D, we compare in Sec. VI
this random-walk expression with the theoretical forms of D
obtained from the Chapman-Enskog method in the so-called
first- and second-Sonine approximations and with the results
obtained by numerically solving the Boltzmann equation by
means of the direct simulation Monte Carlo (DSMC) method
[13]. We end the paper in Sec. VII with some conclusions and
remarks.

II. THE MOLECULE AS A RANDOM WALKER:
MEAN-SQUARE DISPLACEMENT

We consider a gas in equilibrium with no external fields.
The velocity distribution of the molecules is then a Maxwell-
Boltzmann distribution. We single out a molecule that can be
either identical to or distinct from the other molecules. We
refer to this molecule as the random walker or intruder (a
term commonly used in kinetic theory of granular gases [14]).
We are interested in understanding how far this molecule
will be from its initial position R(t ) after a given time t .
With no external field, the average of this quantity is equal
to zero: 〈R(t )〉 = 0. However, the second moment 〈R2(t )〉,
or mean-square displacement (MSD), is the relevant quantity
because provides information about the extent to which these
intruders or random walkers spread (diffuse) within the gas.
In particular, the diffusion coefficient D of the molecule in
a three-dimensional gas can be obtained from the long-time
(i.e., very large number of collisions) value of the quotient
〈R2(t )〉/6t , namely

D = lim
t→∞

〈R2(t )〉
6t

. (2)

The diffusion of a molecule in a gas at equilibrium is normal
so that the limit of Eq. (2) exists.

A. Evaluation of 〈R2
N〉

To evaluate D or 〈R2(t )〉, it is convenient to first consider
the displacement of the random walker (the intruder) after N
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steps (collisions):

RN =
N∑

i=1

ri, (3)

where ri is ith displacement (flight, free path) of the molecule.
From Eq. (3), one finds

R2
N =

N∑
i=1

ri · ri +
N∑

i �= j

ri · r j (4)

=
N∑

i=1

ri · ri+ 2
N−1∑
i=1

ri · ri+1+ 2
N−2∑
i=1

ri · ri+2 + · · · . (5)

At equilibrium, the probability density function (pdf) of the
step sizes does not depend on time, so that〈

R2
N

〉 = N〈r1 · r1〉 + 2(N − 1)〈r1 · r2〉 + 2(N − 2)〈r1 · r3〉
+ · · · . (6)

It is convenient to write 〈R2
N 〉 as〈

R2
N

〉 = N�2
e, (7)

where �e can be identified as an effective free path. The
quantity �2

e = 〈R2
N 〉/N , is the MSD per collision and can be

approximated by

�2
e ≈ 〈

r2
1

〉 + 2〈r1 · r2〉 + 2〈r1 · r3〉 + · · · (8)

for sufficiently large N . Here we have assumed that the steps
decorrelate fast enough so that the error in the approximation

(N − k − 1) 〈r1 · rk〉 ≈ N〈r1 · rk〉 (9)

can be ignored even for large k. For example, we will see
in Sec. III that, for elastic hard spheres where the mass of
the intruder m1 is equal to the mass m2 of the molecules
of the gas, the quantity 〈r1 · r1+k〉 decays exponentially fast,
approximately as 0.406k . The validity of this approximation
will be discussed in Sec. VI.

It is convenient to rewrite Eq. (8) as

�2
e〈

r2
1

〉 ≈ 1 + 2〈r1 · r2〉〈
r2

1

〉 + 2〈r1 · r3〉〈
r2

1

〉 + · · · ≡
∞∑

n=1

cn. (10)

We will call the series in Eq. (8) the collisional series while
the series

∑∞
n=1 cn appearing in Eq. (10) will be referred to

as the reduced collisional series. In summary, Eqs. (7) and
(10) tell us that the mean-square displacement of the intruder
per collision, 〈R2

N 〉/N , is just the mean-square free path, 〈r2
1〉,

corrected by the reduced collisional series.
The expression (7) for the MSD is exact for a random walk

with isotropic and uncorrelated steps of a fixed size �e. This
effective random walk [where �e is determined by Eq. (8)] is
then equivalent to the actual random walk in the sense that
both lead to the same MSD.

B. Evaluation of 〈R2(t )〉 from 〈R2
N〉

The pdf of the position R of the intruder at time t can be
written as

P(R, t ) =
∞∑

N=0

PN (R)χN (t ), (11)

where PN (R) is the pdf of the position of the walker after N
steps and χN (t ) is the probability of taking exactly N steps up
to time t . In terms of P(R, t ), the MSD is

〈R2(t )〉 =
∫

dR P(R, t )R2. (12)

Substitution of Eq. (11) into Eq. (12) leads to

〈R2(t )〉 =
∞∑

N=0

χN (t )
∫

PN (r)R2 dR =
∞∑

N=0

χN (t )
〈
R2

N

〉
. (13)

On obtaining Eq. (13) summation and integration have been
interchanged. Taking into account Eq. (7), we find

〈R2(t )〉 = �2
e

∞∑
N=0

χN (t )N = 〈N (t )〉 �2
e, (14)

〈N (t )〉 being the average number of steps given (collisions
suffered) by the random walker up to time t . From Eqs. (2)
and (14), one achieves the result

D = lim
t→∞

〈N (t )〉
6t

�2
e . (15)

When the gas is at equilibrium, the collision frequency does
not depend of the position and time. Therefore, 〈N (t )〉/t rep-
resents the average collision frequency 〈μ〉 (recall that it is
assumed that t is large in this expression, implying a signifi-
cant number of collisions). Because the average time between
collisions 〈τ 〉 (collision interval) is the inverse of the collision
frequency [3,6,15], then Eq. (15) can be written as

D = 〈μ〉 �2
e

6
= �2

e

6〈τ 〉 . (16)

It is convenient to rewrite Eq. (16) in terms of the mean free
path λ and the elementary kinetic theory diffusion coefficient
DeKT:

D = DeKT
�2

e

2λ2
. (17)

On writing Eq. (17), use has been made of Eq. (1) and the fact
that the average speed v̄ of the molecules is v̄ = λ/〈τ 〉 = λ〈μ〉
[3,6,15]. Using Eq. (8), Eq. (17) can be finally written as

D = DeKT

〈
r2

1

〉
2λ2

(
1 + 2〈r1 · r2〉〈

r2
1

〉 + 2〈r1 · r3〉〈
r2

1

〉 + · · ·
)

. (18)

Assuming that λ and 〈μ〉 are known, the only quantity
to evaluate for estimating D is the effective mean free path
�2

e . This is tantamount to evaluate the averages 〈r1 · rk〉 [see
Eq. (8)]. Since this task is not simple (as discussed later in
Sec. V), we can make some simple approximations. First, we
take 〈r2

1〉 ≈ 2λ2, which would be true if the gas molecules
(except the intruder) were motionless [3,4,15]. Second, we
neglect correlations between successive steps (i.e., 〈r1 · rk〉 =
0 for k > 0). Combining both approximations, we find that
�2

e = 2λ2 and so, the diffusion coefficient is given by the
elementary kinetic theory [7], Eq. (1).
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III. CORRELATIONS, PERSISTENCE,
AND MSD: JEANS FORMULA

In the previous Sec. II, we have discussed how the eval-
uation of the intruder’s MSD (or, equivalently, its diffusion
coefficient) can be reduced to the evaluation of the effective
free path �e [see Eq. (17)], or the evaluation of 〈r1 · rk〉 [see
Eq. (8)]. The precise computation of these quantities will be
addressed in Sec. V. In the present section we show how to
approximate them in terms of the mean free path λ and the
so-called persistence of the collisions. We employ relatively
straightforward and simple arguments.

The evaluation of 〈r1 · rk〉 for k = 1 (that is, 〈r2
1〉) is the eas-

iest one. For elastic hard spheres, an elementary computation
yields 〈r2

1〉 ≈ 2λ2. This comes from the simple (approximate)
expression P(�) = exp(−�/λ)/λ for the distribution of the
free path length (� ≡ r1) [4,15]. This expression is derived un-
der the simplifying assumption that the intruder moves within
a gas where its particles are “frozen.” The rigorous result is
more complex and we will discuss this in Sec. V B.

For estimating the average 〈r1 · rk〉 = 〈r1rk cos θ1,k〉 with
k � 2 we assume that the size r1 of the step 1 and the value of
the projection of the step rk over r1 are uncorrelated. Namely,
we make the approximation

〈r1 · rk〉 ≈ 〈r1〉〈rk cos θ1,k〉 = λ〈rk cos θ1,k〉, (19)

where θi, j denotes the angle between the displacements ri

and r j . It is important to note that correlations indeed exist
due to the fact that the size of displacements (free paths)
before and after the collision (ri and ri+1, respectively) as
well as the angle formed by these displacements depend on
the corresponding velocities vi and vi+1, which are correlated.

Let us now see how to estimate the term 〈rk cos θ1,k〉 by
using the spherical cosine law that relates the cosines of the
angles θ1,k , θ1,2, and θ2,k:

cos θ1,k = cos θ1,2 cos θ2,k + sin θ1,2 sin θ2,k cos ϕ1,2,k, (20)

where ϕ1,2,k is the angle between the plane generated
by {r1, r2} and the plane generated by {r2, rk}. Due to
the rotational symmetry of collisions along the direc-
tion of the precollisional displacements (or velocities), all
values of ϕ1,2,k are equally probable. This implies that
〈rk sin θ1,2 sin θ2,k cos ϕ1,2,k〉 = 0, and then

〈rk cos θ1k〉 = 〈rk cos θ1,2 cos θ2,k〉. (21)

The relation (21) can be rewritten as

〈rk cos θ1k〉 =
〈
r1

r2

r1
cos θ1,2

rk

r2
cos θ2,k

〉
(22)

or, neglecting correlations, as

〈rk cos θ1k〉 ≈ λ

〈
r2

r1
cos θ1,2

〉〈
rk

r2
cos θ2,k

〉
. (23)

We repeat this procedure for estimating the value of the
last factor 〈(rk/r2) cos θ2,k〉. We use again the spherical co-
sine law that relates θ2,k with θ2,3 and θ3,k . As before,

〈(rk/r2) sin θ2,3 sin θk−1,k cos ϕ2,3,k〉 = 0 and so〈
rk

r2
cos θ2,k

〉
=

〈
r3

r2
cos θ2,3

rk

r3
cos θ3,k

〉
≈

〈
r3

r2
cos θ2,3

〉 〈
rk

r3
cos θ3,k

〉
. (24)

Repeating this procedure we get

〈rk cos θ1k〉 ≈ λ

〈
r2

r1
cos θ1,2

〉〈
r3

r2
cos θ2,3

〉
· · ·

= λ

k−1∏
i=1

〈
ri+1

ri
cos θi,i+1

〉
. (25)

On the other hand, at equilibrium, the averages of the form
〈(ri+1/ri ) cos θi,i+1〉 do not depend on i (i.e., on time), and then
Eq. (25) yields

〈rk cos θ1k〉 ≈ λ

〈
r2

r1
cos θ1,2

〉k−1

. (26)

Following this, we approximate〈
r2

r1
cos θ1,2

〉
≈

〈
v2

v1
cos θ1,2

〉
. (27)

Note that this relation would be exact if all the flight times
(times between collisions) τi were the same for all i as ri =
viτi. Recall that r2 cos θ1,2 is the component of the postcolli-
sional displacement r2 along the direction of the precollisional
displacement r1. One could then see r2 cos θ1,2/r1 as the
fraction of the precollisional displacement that is not lost,
that persists, after the collision. Similarly, v2 cos θ1,2/v1 is the
fraction of v1 that persists after a collision. The average of this
quantity is the so-called mean persistence ratio ω:〈

v2

v1
cos θ1,2

〉
≡ ω. (28)

The mean persistence ω is a well-studied quantity in the ki-
netic theory of gases (see, for example, Sec. 5.5 of Ref. [1]).
This explains our interest in constructing the factorizations of
Eqs. (22), (24), and (25).

Collecting Eqs. (19), (26), and (27), we finally find:

〈r1 · rk〉 ≈ λ2 ωk−1. (29)

An alternative deduction of this formula is presented in Ap-
pendix A. Equation (29) together with 〈r2

1〉 ≈ 2λ2 and Eq. (8)
leads to

�2
e ≈ 2λ2(1 + ω + ω2 + · · · )

= 2λ2

1 − ω
, (30)

which implies [see Eq. (14)]

〈R2(t )〉 = 〈N (t )〉 2λ2

1 − ω
(31)

or [see Eq. (17)]

D = DeKT

1 − ω
= λv̄

3(1 − ω)
≡ DJ . (32)
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This simple and nice expression DJ is no more than the
classic expression derived by Jeans (see the second formula
of section 169 of Ref. [11]), which takes into account the
persistence of the molecules to improve the elementary kinetic
expression DeKT.

A full assessment of these formulas for elastic hard spheres
will be given in Sec. VI when we compare them against
DSMC simulations. Nonetheless, we can provide here some
numbers that show the large improvement that the consider-
ation of the persistence of the molecules leads to. For elastic
hard spheres, one has ω 	 0.406 for m1/m2 = 1, ω 	 0.245
for m1/m2 = 0.5, and ω 	 0.785 for m1/m2 = 5. Here m1 and
m2 are the masses of the intruder and the gas, respectively.
From Eq. (32), one finds that D/DeKT is 1.68 for m1/m2 = 1,
1.32 for m1/m2 = 0.5, and 4.66 for m1/m2 = 5. The cor-
responding DSMC simulation values for D/DeKT are 1.40,
1.82, and 5.37, respectively. The inclusion of correlations
between displacements through the mean persistence ratio
clearly improves the DeKT values. More details will be given in
Sec. VI.

A long time ago it was realized (see Ref. [11], for example)
that one way to improve the accuracy of the MFP theory
predictions was to take into account that, after a collision,
the exit direction of the colliding molecule is not completely
isotropic. Instead, there is a certain probability that the exit
direction is similar to the direction of incidence. This is known
as the persistence of velocities after collision [1,11]. MFP-
type formulas incorporating this aspect offer better and more
accurate predictions. However, the arguments used to incorpo-
rate this fact into the equations were not entirely convincing.
Perhaps for this reason, the consideration of arguments based
on the persistence of collisions in the MFP formulation has
not gained much success or relevance, remaining limited es-
sentially to the contributions of Jeans [10,11]. This is despite
the clear and intuitive understanding that persistence must
play a role in the transport properties, since these properties
necessarily depend on the manner in which collisions occur.
In the present section, we have shown how to include the
persistence in the calculation of the diffusion coefficient using
a different approach. We will further refine this random-walk
approach in the subsequent sections.

IV. AN IMPROVED FORMULA
FOR THE DIFFUSION COEFFICIENT

One of the limitations of free path theory is its inability to
control the reliability of its assumptions and approximations.
This issue has been frequently highlighted, particularly in the
book of Chapman and Cowling (see Sec. 6.5 of Ref. [1]).
However, it is important to recognize that the standard ap-
proach advocated by the Chapman-Enskog method [1] is not
entirely immune to this limitation, as demonstrated by the
widespread use of DSMC and molecular dynamics simula-
tions to ensure the results of the kinetic theory.

In this section, we examine the assumptions underlying
Eqs. (30) and (32). Equation (30) was obtained from Eq. (29)
by assuming two key approximations: first, 〈r2

1〉 ≈ 2λ2 and,
second, 〈r1 · rk〉 ≈ λ2 ωk−1 for k � 2 [see Eq. (29)] We can
(partially) eliminate the first approximation by using the exact
value of the mean-square free path 〈r2

1〉. In this case, from

Eqs. (8) and (29), one has

�2
e ≈ 〈

r2
1

〉 + 2λ2(ω + ω2 + · · · )

= 〈
r2

1

〉[
1 + 2λ2〈

r2
1

〉 (ω + ω2 + · · · )

]
≈ 〈

r2
1

〉
(1 + ω + ω2 + · · · )

=
〈
r2

1

〉
1 − ω

, (33)

where in the third line of Eq. (33) we have replaced 2λ2 by
〈r2

1〉. Substitution of Eq. (33) into Eq. (14) yields

〈R2(t )〉 = 〈N (t )〉
〈
r2

1

〉
1 − ω

, (34)

or, from Eq. (16), one gets

D =
〈
r2

1

〉
6〈τ 〉

1

1 − ω
. (35)

It is convenient to rewrite this equation in terms of DeKT as

D = DeKT
κ

1 − ω
≡ DRW, (36)

where

κ =
〈
r2

1

〉
2λ2

. (37)

On writing Eq. (36), use has been made of Eq. (1) and the
relation v̄ = λ/〈τ 〉.

The nice thing about Eqs. (34) and (36) is that they are
equivalent to the formula

D =
〈
v2

1τ1
〉

d

1

1 − ω
, (38)

which is obtained from Eq. (32) if one replaces in this equa-
tion λv̄ by 〈r1v1〉 = 〈v2

1τ1〉. This replacement, mentioned by
Jeans in Ref. [11] (see the last equation of page 203 of this
reference), was not explored further, leaving its implications
uncharted. Equations (36) and (38) are equivalent provided
that 〈r2

1〉/〈τ 〉 = 2〈v2
1τ1〉. This is proved in Sec. V B [see

Eq. (49)].
It is important to note that the validity of Eq. (33) [and,

equivalently, Eqs. (34) and (36)], rests in the validity of the
approximation

c1+k = 2〈r1 · r1+k〉〈
r2

1

〉 ≈ ωk, k � 1. (39)

As mentioned in Sec. II, this result implies that Eq. (9) holds
unless m1/m2 → ∞ because (see at the end of Sec. B) ω → 1
in this limiting case.

The relationship 〈r1 · r1+k〉 ∼ ωk indicates that the corre-
lations between successive free paths decay exponentially.
These short-range correlations imply that the diffusion of
the molecule is normal [16]: At large times, 〈R2〉 increases
linearly with time and the distribution of the position R(t )
is Gaussian. The fast exponential decay of the correlations
means that after a few collisions almost no memory of the
initial displacement r1 remains, and the preferred direction of
movement r1 becomes barely noticeable. Let us assume our
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measurement resolution for 〈r1 · r1+k〉 is ε. This implies that
after n = ln(ε)/ ln ω collisions we are not longer able to detect
correlations between successive free paths r1+k and the initial
displacement r1. Within this resolution, 〈R2(n)〉 = n�2

e holds,
and therefore 〈R2(N )〉/N = 〈R2(n)〉/n = �2

e . In other words,
if we observe the intruder movement with a spatial resolu-
tion of the order 〈R2(n)〉1/2 (or, equivalently, with a temporal
resolution of around n〈τ 〉), then what we see is a self-similar
random walk. Obviously, this self-similarity does not hold if
we scrutinize the particle’s movement with a finer spatial or
temporal resolution. In that case, we perceive persistence (i.e.,
the correlations between successive steps), something that
goes unnoticed when the motion is viewed at larger scales.

On shorter spatial or temporal scales, the “diffusion” of the
intruder is not normal, i.e., 〈R2(n)〉 is not proportional to the
number n of steps (collisions). This conclusion can be easily
obtained from Eqs. (6) and (39):

〈R2(n)〉 ≈ 〈
r2

1

〉 n−1∑
k=0

(n − k)ωk =
〈
r2

1

〉
1 − ω

[
n − ω(1 − ωn)

1 − ω

]
.

(40)

Equation (40) clearly shows that 〈R2(n)〉 is not a linear func-
tion of n. However, after a relatively small number n of
collisions, the exponential corrective term becomes negligible
with respect to n, and one eventually finds that the MSD of
the molecule grows linearly with n. The number n of col-
lisions for which the correction term becomes negligible is
smaller when ω is smaller, i.e., the smaller the mass of the
intruder (this is because ω is an increasing function of the
mass of the intruder). In this normal diffusive regime, the
slope d〈R2(n)〉/dn of the MSD does not depend on n. In our
case, the slope of the MSD for all n [in units of the asymptotic
long-term slope 〈r2

1〉/(1 − ω)] is approximately given by this
nonconstant function:

1 + ω1+n ln ω

1 − ω
≡ s(n, ω). (41)

The separation of s(n, ω) from 1 is a measure of how far
the intruder’s displacement is from the long-time asymptotic
normal diffusion regime. The function s(n, ω) is plotted in
Fig. 1 versus n for several values of ω. We see that s(n, ω)
approaches 1 very quickly, meaning that the normal diffusive
regime [where s(n, ω) = 1] is reached after a small num-
ber of collisions. For example, for m1/m2 = 0.5, 1, and 5,
it takes only about 4, 7, and 28 collisions, respectively, to
reach a regime where the slope of 〈R2(n)〉 differs by less than
one part in a thousand from its long-term asymptotic value
〈r2

1〉/(1 − ω). In other words, if one observes the motion of
the intruder on time and/or space scales larger than those
corresponding to 4, 7, and 28 collisions, then the motion of the
intruder with m1/m2 = 0.5, 1, and 5, respectively, will look
like normal diffusion. Of course, these numbers depend on the
criterion used to decide when normal diffusive behavior is fi-
nally achieved. For example, if we use an alternative criterion
and decide that the molecule reaches normal diffusion when
the value of d ln〈R2(n)〉/d ln n is no more than, say, 5% away
from 1, then the corresponding numbers of collisions would
be 7, 14, and 77, respectively.

FIG. 1. Plot of s(n, ω) (the slope of the MSD in units of the
asymptotic long-time slope) vs the number of collisions n for
m1/m2 = 0.5 (ω 	 0.245; square), m1/m2 = 1 (ω 	 0.406; trian-
gles), and m1/m2 = 5 (ω 	 0.785; circles).

Finally, since Eq. (39) plays a key role in our
approximations, verifying its validity is a must. To do
this, we have to evaluate the average 〈r1 · r1+k〉. This will be
the subject of Sec. V.

V. EVALUATION OF 〈r1 · rk〉
AND DIFFUSION COEFFICIENT

A. Probability of a given path of N steps

Let PN (v1, τ1; v2, τ2; . . . ; vN , τN )dv1dv2 · · · dvN dτN be
the probability of finding molecule 1 (the intruder) with any
velocity which is deflected by collision into v1 and v1 + dv1

(let’s denote it as v1, dv1) and travels freely for a time τ1,
is then deflected again into v2, dv2 and continues to travel
freely for another time τ2, and so on, until it is deflected
into vN , dvN before finally colliding in the time interval
τN , dτN . Note that, because ri = viτi, this probability can
also be seen as the probability that a molecule follows the
path r1 + r2 + · · · + rN with velocities {v1, v2, . . . , vN }. The
pdf PN (v1, τ1; v2, τ2; . . . ; vN , τN ) ≡ PN (1, 2, . . . ; N ) is given
by [6]

PN (1, 2, . . . ; N ) = f (1)μ(1)
N−1∏
i=1

W (i, i + 1)

×
N∏

j=1

e−μ( j)τ j μ(N ), (42)

where μ(i) ≡ μ(vi ) is the collision frequency for particles of
velocity vi and

f (1) ≡ f (v1) =
(

m1

2πkBT

)3/2

e−m1v
2
1/2kBT (43)

is the equilibrium pdf of the velocity of the intruder [17]. In
addition, kB is the Boltzmann’s constant and the transition rate
W (i, i + 1) ≡ W (vi, vi+1) is the probability that a molecule
with precollisional velocity v1 is deflected into v2, dv2
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(postcollisional velocity). With the help of the equation∫
f (v1)W (v1, v2)dv1 = f (v2)μ(v2) (44)

(which embodies the principle of detailed balancing [6]), it
can be proved that PN is not normalized to the unity, but to the
average collision rate:∫

PN (1, 2, . . . ; N ) dv1 · · · dvN dτN = 〈μ〉. (45)

We will use the notation P̃N = PN/〈μ〉 for the pdf normalized
to the unity.

B. The mean-square and the pdf of the free
path for hard spheres

From the definition of P̃1, the mean-square free path is
defined as 〈

r2
1

〉 =
∫ ∞

0
dτ1

∫
dv1 P̃1(v1, τ1)(v1τ1)2. (46)

When N = 1, Eq. (42) leads to

P1(v1, τ1) = f (v1)μ2(v1)e−μ(v1 )τ1 . (47)

Using the expression (47) into Eq. (46) one easily finds〈
r2

1

〉 = 2

〈μ〉
∫

dv1 f (v1)
v2

1

μ(v1)
= 8π

〈μ〉
∫ ∞

0
dv1 f (v1)

v4
1

μ(v1)
.

(48)

Since the term v2
1/μ(v1) can be rewritten as v2

1τ1 in Eq. (48),
then 〈r2

1〉 is the average over the velocity distribution f (v1) of
2v2

1τ1/〈μ〉:
〈
r2

1

〉 = 2

〈
v2

1τ1
〉

〈μ〉 = 2
〈
v2

1τ1
〉〈τ1〉. (49)

This justifies our claim in Sec. IV that the random-walk for-
mula (36) and the Jeans formula (38) are equivalent.

Introducing the expressions of f1 and μ for hard spheres
given by Eqs. (43) and (B1) into Eq. (48), one finds that the
mean-square free path 〈r2

1〉 (in units of 2λ2) is

κ ≡
〈
r2

1

〉
2λ2

= 2
√

π

(
m1

m2

)2(
1 + m1

m2

)1/2

I1,1(m1/m2), (50)

where

I1,1(m) =
∫ ∞

0
e−my2 y4

E (y)
dy. (51)

No explicit expression for I1,1(m) is known, but it can be
easily evaluated numerically. The function κ is plotted in
Fig. 2 as a function of the mass ratio m1/m2. We see that
the larger m1/m2, the larger is the difference of κ from 1.
The largest difference is for m1/m2 → ∞. In this case κ = 3
π/8 	 1.1781 [18].

Note that

P1(v1, τ1)dv1dτ1 = (1/v1)P1(v1, r1/v1)dv1dr1. (52)

Using the standard notation � for the length r1 of the free path,
and taking into account Eqs. (47) and (52), we find that the pdf

FIG. 2. Plot of κ = 〈r2
1 〉/2λ2 vs the mass ratio m1/m2.

of a free path of length � (whatever its corresponding velocity)
is given by

P(�) =
∫

P̃1(v, �/v)

v
dv = 1

〈μ〉
∫

f (v)
μ2(v)

v
e−μ(v)�/vdv.

(53)
From this expression, we can evaluate 〈�2〉 ≡ 〈r2

1〉 =∫
�2P(�)d�. Changing the order of integration, the integral

over � is immediate and we reobtain Eq. (48). A different
way of obtaining Eq. (53) was used in Ref. [19]. This way
involves the so-called on-collision pdf velocity distribution
fcoll = f (v)μ(v)/〈μ〉 (see Refs. [15,19,20]). An interesting
short discussion of P(�) can be found in Sec. II C of Ref. [19]
(see also Ref. [15]).

It must be remarked that the quantity κ would be 1 for all
m1/m2 if the simple approximation P(�) ≈ exp(−�/λ)/λ for
the free path length distribution Eq. (53) would hold. This was
the approximation made to obtain DeKT (see the end of Sec. II)
as well as the Jeans formula (32) for the diffusion coefficient
DJ (see the beginning of Sec. III). Of course, this is only an
approximation. The exact value of P(�) for hard spheres can
be obtained from Eq. (53) as

λ P(�) = 2(m1/m2)2

π (1 + m1/m2)
I�(�/λ, m1/m2). (54)

Here the function I�(x, m) is given by

I�(x, m) =
∫ ∞

0
dy y E2(y) exp

[
−my2 − E (y)

y
√

π (1 + m)
x

]
,

(55)

where the quantity E (y) is defined by Eq. (B3).
The (dimensionless) function λP(�) is plotted in Fig. 3 as

a function of �/λ for several values of the mass ratio m1/m2.
It is quite apparent that Fig. 3 confirms that the expression
exp(−�/λ)/λ is only an approximation of the true length
distribution P(�), as expected. Figure 3 also highlights that the
approximation P(�) ≈ exp(−�/λ)/λ becomes more accurate
as the mass ratio m1/m2 decreases. From a physical point
of view, this is an expected trend since P(�) ≈ exp(−�/λ)/λ
characterizes the free path distribution of an intruder moving
in a gas composed of very massive molecules, which are, from
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FIG. 3. Plot of λP(�) for hard spheres for m1/m2 = 0.2 (dot-
ted line), m1/m2 = 1 (dashed line), and m1/m2 = 10 (dashed-
dotted line). The approximation valid for a very light intruder,
exp(−�/λ)/λ, and for a very massive intruder, Eq. (56), are the solid
lines. Same in the inset but as a semi-log plot.

the intruder’s perspective, almost at rest. Mathematically, this
result is obtained from the asymptotic expansion of P(�)
for m ≡ m1/m2 → 0 (see Appendix C). On the other hand,
the asymptotic expansion of P(�) for m → ∞ (very heavy
intruder) leads to (see Appendix C)

λP(�) ∼ 4

π3/2
G3,0

0,3

(
0, 1

2 , 1

∣∣∣∣ �2

πλ2

)
, (56)

where G3,0
0,3 is a Meijer G function [21]. We have also plotted

this expression in Fig. 3. It is remarkable that the line cor-
responding to the expression (56) is almost indistinguishable
from the one obtained from Eq. (54) for m = 10.

C. The average 〈r1 · rk〉 and the diffusion
coefficient for hard spheres

We aim to evaluate the average 〈r1rk cos θ1,k〉. Following
the same type of steps as those carried in Sec. III [using the
spherical law of cosines, Eq. (20)], one finds the result

〈r1 · rk〉 = 〈r1rk cos θ1,2 cos θ2,3 . . . cos θk−1,k〉. (57)

More explicitly,

〈r1 · rk〉 =
∫

P̃k (1, . . . , k) v1vk τ1τk cos θ1,2 . . . cos θk−1,k

× dv1dτ1 . . . dvkdτk . (58)

Using Eq. (42) and integrating over all τi, Eq. (58) becomes

〈r1 · rk〉 = 1

〈μ〉
∫

f (v1)
W (v1, v2) · · ·W (vk−1, vk )

μ(v1) · · · μ(vk )

× v1vk cos θ1,2 · · · cos θk−1,k dv1 · · · dvk . (59)

Using the collision rate (B1) and the transition rate (B4) of
hard spheres in Eq. (59) and working in spherical coordinates,
one finds that 〈r1 · rk〉 can be written as

〈r1 · rk〉 = 22−k

π3/2

(
m1

m2

)2 (
1 + m1

m2

)2k−5/2 1(
n2σ

2
12

)2

×I1,k (m1/m2), (60)

for k � 2, where

I1,k (m) =
∫ ∞

0
· · ·

∫ π

0
e−my2

1
W̃ (y1, y2) · · ·W̃ (yk−1, yk )

E (y1) · · · E (yk )

× y3
1y2

2 · · · y2
k−1y3

k cos θ12 · · · cos θk−1,k

× sin θ12 · · · sin θk−1,kdy1 · · · dykdθ12 · · · dθk−1,k .

(61)

In units of λ2, one gets

〈r1 · rk〉
λ2

= 22−k√π

(
m1

m2

)2 (
1 + m1

m2

)2k−3/2

×I1,k (m1/m2), (62)

for k � 2. Therefore, according to Eq. (10), we find that the
collisional series can be written as

�2
e =

∞∑
k=1

23−k

π3/2

(
m1

m2

)2 (
1 + m1

m2

)2k−5/2 I1,k (m1/m2)(
n2σ

2
12

)2 . (63)

Alternatively, taking into account Eqs. (50) and (62), the kth
term of the reduced collisional series ck = 2〈r1 · rk〉/〈r2

1〉 is
given by

ck = 〈r1 · rk〉
κλ2

= 21−k

(
1 + m1

m2

)2(k−1) I1,k (m1/m2)

I1,1(m1/m2)
. (64)

Note that the expression (64) also applies for k = 1. Hence,
the reduced collisional series (10) can be written as

�2
e〈

r2
1

〉 =
∞∑

k=1

21−k

(
1 + m1

m2

)2k−2 I1,k (m1/m2)

I1,1(m1/m2)
. (65)

From Eq. (18), the diffusion coefficient D is

D = DeKT

〈
r2

1

〉
2λ2

∞∑
k=1

22−k

(
1 + m1

m2

)2k−2 I1,k (m1/m2)

I1,1(m1/m2)
. (66)

Of course, the problem with the series (66) is that the kth term
requires the evaluation of I1,k , namely, a 2k − 1-dimensional
integral which is unapproachable for large k. However, the
numerical evaluation of the first few terms is accessible. We
show this in Sec. VI.

Before finishing this section it is worthwhile to compare
the integral forms of 〈r1 · rk〉 and the mean persistence ratio
ω. We start noticing that the integrand of Eq. (59) has an
interesting form. Let us denote this integrand by the symbol
A1,k , that is,

〈r1 · rk〉 =
∫

A1,kdv1 · · · dvk . (67)

We see that the integrand of 〈r1 · rk〉 and the integrand of
〈r1 · rk−1〉 just differ by the factor pk−1,k , that is A1,k =
A1,k−1 pk−1,k , where

pk−1,k = W (k − 1, k)

μ(k)

vk

vk−1
cos θk−1,k . (68)

The form of A1,k = A1,k−1 pk−1,k suggests that 〈r1 · rk−1〉,
〈r1 · rk〉, etc., might follow a sequence with a ratio between
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TABLE I. Numerical and DSMC simulation values of 〈r1 · rk〉,
with k = 1, 2, 3, 4, in units of λ2 for several values of m1/m2. For
each value of the mass ratio m1/m2, the first row are the numerical
values and the second row are the DSMC values.

m1/m2

〈
r2

1

〉 〈r1 · r2〉 〈r1 · r3〉 〈r1 · r4〉
0.2 2.0179 0.1198 0.0145 0.0018

2.0174 0.1198 0.0145 0.0018
0.5 2.0529 0.2621 0.0686 0.0183

2.0524 0.2619 0.0686 0.0183
1 2.1012 0.4331 0.1818 0.0772

2.1009 0.4329 0.1818 0.0772
2 2.1640 0.6386 0.3799 0.2269

2.1636 0.6383 0.3798 0.2268
5 2.2458 0.8838 0.6963 0.5489

2.2454 0.8833 0.6960 0.5487
10 2.2915 1.0103 0.8910 0.7858

2.2911 1.0100 0.8907 0.7856

consecutive terms related to the integration of pk−1,k . Note the
closeness of pk−1,k to the integrand of the integral

ω =
∫

f (vk−1)
W (vk−1, vk )

〈μ〉
vk

vk−1
cos θk−1,kdvk−1dvk (69)

that provides the mean persistence ratio. This observation
suggests the proportionality relationship between the ratio of
two consecutive terms of the collisional series and the mean
persistence ratio that we discussed in Secs. III and IV.

VI. COMPARISON WITH DSMC SIMULATIONS AND
BOLTZMANN RESULTS FOR HARD SPHERES

In this section we estimate the terms ck of the reduced colli-
sional series by numerically integrating I1,k ; this result will be
assessed via a comparison with DSMC simulations. Addition-
ally, the theoretical predictions for the diffusion coefficient
given by Eqs. (32) and (36) and by the first- and second-
Sonine approximations (one and two terms in the Sonine
polynomial expansion of the velocity distribution function)
to the Chapman-Enskog solution [1] to the Boltzmann equa-
tion will be also compared with simulation data obtained from
the DSMC method [13]. It is important to remark that both
DSMC simulations and Sonine approximations are derived
through the Boltzmann kinetic equation, which plays a pivotal
role in modeling the kinetic behavior of gaseous particles.
This approach provides a solid theoretical foundation for our
comparisons, enabling us to assess the validity and accu-
racy of our predictions in relation to well-established and
widely accepted methods for describing transport phenomena
in gaseous systems.

In Table I, we present numerical estimates for the first
four terms of the collisional series (8) for various represen-
tative values of the mass ratio m1/m2. These estimates require
the numerical integration of I1,k [see Eqs. (50), (51), (60),
and (61)]. As k increases, the numerical integration becomes
progressively challenging, leading to less precise results, par-
ticularly for small values of m1/m2. We also include in Table I
values obtained through DSMC simulations at very low den-
sities. Some technical details on the implementation of the

TABLE II. The first three ratios c2/c1, c3/c2, and c4/c3 of the
coefficients of the reduced collisional series (10) for several values of
m1/m2 evaluated by means of Eq. (64). DSMC simulations provide
the same results for all cases with the exception of c4/c3 for m1/m2 =
0.2 and m1/m2 = 1; in these cases the simulation results are 0.127
and 0.424, respectively. The last column is the value of the mean
persistence ratio ω for hard spheres [see Eq. (B11)].

m1/m2 c2/c1 c3/c2 c4/c3 ω

0.2 0.119 0.121 0.126 0.107
0.5 0.255 0.262 0.267 0.245
1 0.412 0.420 0.425 0.406
2 0.590 0.595 0.597 0.587
5 0.787 0.788 0.788 0.785
10 0.882 0.882 0.882 0.881

DSMC method to the evaluation of the averages 〈r1 · rk〉 are
provided in the Appendix D. Specifically, we consider ap-
proximately 105 molecules, conducting up to 5 × 105 runs,
each comprising an average of 500 proposed candidates to
collide in every Monte Carlo step, with the final number of
collisions depending on the mass ratio m1/m2. Table I high-
lights the excellent agreement between DSMC simulations
and the numerical results. From these results, the values of the
first ratios between successive terms of the reduced collisional
series can be derived. These values are given in Table II. Ad-
ditionally, we provide the corresponding values of the mean
persistence ratio ω. The proximity of the coefficients ck/ck−1

to ω is quite remarkable. Note that this closeness improves for
heavier intruders. In Fig. 4 we compare the first three ratios
of the reduced collisional series, c2/c1, c3/c2 and c4/c3, with
ω for a large set of mass ratios. The agreement is stunning,
providing strong support for the approximation c1+k/ck ≈ ω

or, equivalently, for c1+k ≈ ωk (recall that c1 = 1). This result
is the cornerstone of the approximations (31) and (34) for
the MSD, and of the approximations (32) and (36) for the

FIG. 4. Plot of c2/c1 (dashed line, squares), c3/c2 (dashed-dotted
line, circles), and c4/c3 (dotted line, triangles) vs the mass ratio
m1/m2. The lines are obtained by numerically evaluating the expres-
sion (64) for each mass ratio while the symbols are DSMC simulation
results. The solid line is the mean persistence ratio ω. Inset: The same
when the intruder is lighter than the molecules of the gas.
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diffusion coefficient. These findings highlight the reliability
of the random-walk approach.

It has long been recognized that a connection exists be-
tween the random-walk formulation of the diffusion in gases
and the Jeans formulation, which involves the persistence
of velocity. It is therefore surprising that the possibility (as
demonstrated in this paper) of deriving Jeans’ diffusion coeffi-
cients from a random-walk description of molecular diffusion
has gone unnoticed. We suspect that this oversight may be
attributed to the apparent disparity between the two formu-
lations (Jeans and random-walk approaches) when relying
on Yang’s (very rough and poor) estimate of 〈ri · ri+k〉 for
hard spheres with k = 1, 2 [6]. For m1 = m2, the values of
c2/c1 and c3/c2 that one obtains from Yang’s results (see
Appendix C of Ref. [6]) would be 0.72 and 0.47, respectively.
These values are very different from each other (and from the
true values 0.412 and 0.420 we give in Table II) and from
the mean persistence ratio 0.406 corresponding to this case.
These imprecise estimates by Yang are understandable given
the complexity of the integrals I1,k , and that Yang lacked the
computational means to numerically evaluate them. Had Yang
been able to compute the first few terms 〈r1 · r1+k〉 accurately,
it is likely that he or others (Monchick, for example: See
Refs. [8] and [12], specifically compare Sec. IV of Ref. [12]
with the last paragraph of Sec. IV of Ref. [8]) would have
recognized the close resemblance of the ratio between these
terms to the mean persistence ratio. Such a realization would
have unveiled the connection between Yang’s random-walk
formulas and those of Jeans.

From the relation c2 ≈ c1+k/ck ≈ ω, we have obtained
c1+k ≈ ωk . Employing this result in Eqs. (10) and (18), we
achieve the expressions (33) and (36) in Sec. IV. Note, how-
ever, that the approximation c2 ≈ c1+k/ck also implies c1+k ≈
ck

2. The use of this result in Eqs. (10) and (18) yields the
expressions

〈R2(t )〉 = 〈N (t )〉
〈
r2

1

〉
1 − c2

, (70)

and

D = DeKT
κ

1 − c2
= λv̄

d

κ

1 − c2
≡ D′

RW. (71)

Certainly, choosing for ω as the estimate for c1+k/ck offers
the advantage of having the closed explicit expression (B11),
while the evaluation of c2 requires numerical computation.
On the other hand, as we will see next, D′

RW turns out to be
somewhat better than DRW.

In Table III we compare the diffusion coefficients provided
by the random-walk approach, Eqs. (32), (36), and (71), with
the diffusion coefficients provided by two standard approxi-
mations of the kinetic theory of gases, namely the first and
second Sonine approximations. In terms of DeKT, the diffusion
coefficient D[1]

KT for hard spheres obtained from the first Sonine
approximation is given by (see Sec. 14.2 of Ref. [1])

D[1]
KT

DeKT
= 9π

32

(
1 + m1

m2

)
. (72)

TABLE III. The diffusion coefficients DJ , DRW, D′
RW, D[1]

KT, and
D[2]

KT, as well as DSMC simulations values in units of D[0]
KT for several

values of m1/m2.

m1/m2 DJ DRW D′
RW D[1]

KT D[2]
KT DSMC

0.2 1.12 1.13 1.14 1.06 1.12 1.15
0.5 1.32 1.36 1.38 1.33 1.37 1.40
1 1.68 1.77 1.79 1.77 1.80 1.82
2 2.42 2.62 2.64 2.65 2.67 2.67
5 4.66 5.23 5.27 5.30 5.31 5.34
10 8.40 9.63 9.70 9.72 9.72 9.84

The second-Sonine approximation D[2]
KT is (see Sec. 14.3 of

Ref. [1])

D[2]
KT

DeKT
= 9π

32

(
1 + m1

m2

)
13 + 16m1/m2 + 30(m1/m2)2

12 + 16m1/m2 + 30(m1/m2)2
.

(73)

We plot in Fig. 5 the diffusion coefficients DJ , DRW, D[1]
KT,

and D[2]
KT as a function of the mass ratio m2/m1 when the in-

truder is heavier than the molecules of the gas (m1 > m2). The
complementary case of an intruder lighter than the molecules
of the gas (m1 < m2) is considered in Fig. 6. In Figs. 5
and 6 we show the results of DSMC simulations. We see
that the simplest formula with persistence, DJ [Eq. (32)] is
a significant improvement over the diffusion coefficient of
the elementary kinetic theory DeKT and qualitatively captures
the effect of the mass ratio of the random-walk coefficient.
However, at a quantitative level, this approach is not fully sat-
isfactory. On the contrary, the improved random-walk formula
[given by the coefficient DRW, see Eq. (36)] provides excellent
results. In fact, when the intruder is lighter than the molecule
of the gas, it is even better than the first Sonine approximation.
In the opposite case, when the intruder is heavier than the
molecule of the gas, the results are quite good, slightly worse

FIG. 5. Plot of the reduced diffusion coefficient D/DeKT as a
function of the mass ratio m2/m1 when the intruder is heavier than the
molecules of the gas. The lines correspond to D = DJ (dotted line),
D = DRW (solid line), D = D[1]

KT (dashed-dotted line), and D = D[2]
KT

(dashed line). The circles are DSMC simulation values.
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FIG. 6. Plot of the reduced diffusion coefficient D/DeKT as a
function of the mass ratio m1/m2 when the intruder is lighter than the
molecules of the gas. The lines correspond to D = DJ (dotted line),
D = DRW (solid line), D = D[1]

KT (dashed-dotted line), and D = D[2]
KT

(dashed line). The circles are DSMC simulation values.

than, but comparable, to the results obtained with the Sonine
approximations.

VII. CONCLUSIONS

In this paper we have used the fact that mean-square dis-
placement of a molecule in a gas at time t can be written as
the mean-square displacement of a molecule with isotropic
collisions, 〈R2(t )〉 = 〈N (t )〉〈r2

1〉, corrected by the prefactor
(the reduced collisional series)

∑∞
k=1 ck = 1 + 2

∑∞
k=2〈r1 ·

rk〉/〈r2
1〉. The key result of our paper is the realization that

c1+k can be well approximated by ωk , leading to the result
∞∑

k=1

ck =
∞∑

k=0

ωk = 1

1 − ω
, (74)

and, hence,

〈R2(t )〉 = 〈N (t )〉
〈
r2

1

〉
1 − ω

. (75)

This implies that, to estimate the MSD of a molecule in a
gas at equilibrium, only two quantities need to be known:
the mean-square free path 〈r2

1〉, and the mean persistence ratio
ω. Expressed as 〈R2(t )〉/(2dt ), the diffusion coefficient is the
value associated with purely isotropic collisions (i.e., λv̄/d),
corrected by the factor (1 − ω)−1. We have justified this result
in two ways: first, through simple and intuitive arguments
(that involve some uncontrolled approximations) and, second,
by rigorously evaluating the first few terms ck of the reduced
collisional series and realizing that, for hard spheres, these
terms form an almost perfect geometric sequence with a com-
mon ratio very close to ω.

The formulas we have derived for the diffusion coefficient,
Eqs. (32) and (36), are found to be identical to those proposed
by Jeans long ago through a different pathway. While Jeans’
arguments were insightful and demonstrated a mastery of
free path arguments, his deduction of the corrective terms
was somewhat hand-waving and lacked a clear identification
of their nature—specifically, that these corrective terms are

2〈rk · r1+k〉/〈r2
1〉. In contrast, our approach not only identifies

the nature of the corrective terms but also allows us to quantify
the validity of the approximations, at least for the first few
terms. We have verified this both numerically and through
DSMC simulations for the particular case of hard spheres.

For a dilute gas of hard spheres, we have compared the
theoretical predictions of the diffusion coefficient obtained
from the random-walk and kinetic theory (first and second
Sonine approximations to the Chapman-Enskog solution to
the Boltzmann equation) approaches with those obtained by
numerically solving the Boltzmann equation by means of
the DSMC method [13]. We have found that the results
provided by the improved random-walk formula were quite
good, surpassing even the first Sonine approximation for
intruders lighter than the gas molecules. Furthermore, the
improved random-walk results closely approximate the sec-
ond Sonine coefficient for a wide range of molecule mass
values.

Finally, we note that the generalization of the present
random-walk approach to mixtures with arbitrary concentra-
tion and/or other type of interactions and dimensions can be
easily performed. As a different project, we also plan to extend
the present results to the case of granular gases modeled as
a gas of smooth hard spheres with inelastic collisions [14].
Work along these lines is currently in progress.
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APPENDIX A: AN ALTERNATIVE DEDUCTION OF EQ. (29)

Here we present an alternative approach to derive Eq. (29)
in Sec. III. We begin by assuming that the sizes of the steps 1
and k, as well as their angles, are uncorrelated, so that

〈r1 · rk〉 ≈ 〈r1〉〈rk〉〈cos θ1,k〉 = λ2〈cos θ1,k〉. (A1)

Next, using the spherical cosine law Eq. (20) and con-
sidering that ϕ1,2,k is equiprobable, we find 〈cos θ1k〉 ≈
〈cos θ1,2 cos θ2,k〉. Now we assume that the dispersion angles
of θ1,2 and θ2,k for two successive collisions are uncorrelated
(or weakly correlated), so that 〈cos1k〉 ≈ 〈cos1,2〉 〈cos θ2,k〉.
We estimate 〈cos θ2,k〉 as we did with 〈cos θ1,k〉, and so on.
The final result is

〈cos1k〉 =
k−1∏
i=1

〈cos θi,i+1〉. (A2)

At equilibrium, the value of i is not relevant and this equa-
tion becomes 〈cos θ1k〉 = 〈cos θ1,2〉k−1. Now we use Eq. (27)
and take the approximation ω ≈ 〈v2/v1〉〈cos θ〉. We know
that 〈v2〉 = 〈v1〉. This prompts us to make the approxima-
tion 〈v2/v1〉 ≈ 1. Thus, 〈cos θ1,2〉 ≈ ω and Eq. (A1) becomes
Eq. (29).
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APPENDIX B: SOME BASIC QUANTITIES
FOR HARD SPHERES

In this Appendix, for reference, we provide results on some
basic quantities (mean collision time, mean and variance of
the free path, free path distribution, and mean persistence ra-
tio) that appear in the random-walk approach for the particular
case of a gas of hard spheres at equilibrium. Recall that in
this case the distribution of velocities f (v) is the Maxwell-
Boltzmann distribution (43).

To evaluate averages with respect to the trajectory of a
molecule, we need to know the pdf PN . From Eq. (42) we see
that this requires knowing both the collision rate μ and the
transition rate W . For hard spheres, the collision rate is given
by [1,6]

μ(v) = n2σ
2
12

(
2πkBT

m2

)1/2

E (y), (B1)

where

y =
(

m2

2kBT

)1/2

v, (B2)

and [22]

E (y) = e−y2 +
(

2y + 1

y

)√
π

2
Erf(y). (B3)

Here T is the temperature of the gas, n2 is the number density
of molecules of the gas, and σ12 = (σ1 + σ2)/2, where σ1 and
σ2 are the diameters of the intruder and the molecules of the
gas, respectively, and Erf is the error function.

Formula (B1) and those we will give hereafter are valid for
dilute gases, i.e., for very small n2. One can extend the validity
of these formulas to larger values of n2 by simply realizing
that the local density of molecules with which the intruder
collides is g(σ12)n2, with g(r) being the radial distribution
function of the gas. This implies substituting n2 for g(σ12)n2

in all expressions where n2 appears (which we will not do in
this article). Precise values of the radial distribution function
at contact, g(σ12), for mixtures of elastic hard spheres are well
known (see Ref. [23], for example).

The transition rate W (v1, v2) for hard spheres is [6,19]

W (v1, v2) = n2σ
2
12√
π

(
m2

2kBT

)(
m1 + m2

2m2

)2

W̃ (y1, y2) (B4)

with

W̃ (y1, y2) =
exp

{
−

[
m1+m2

2m2
|y2 − y1| + y1 · y2−y1

|y2−y1|
]2}

|y2 − y1| .

(B5)

From Eq. (B1) one finds the well-known values of the
average collision rate,

〈μ〉 =
∫

dv f (v)μ(v)

= 2
√

π

(
m1 + m2

m1

)1/2(2kBT

m2

)1/2

n2σ
2
12, (B6)

and the mean free path,

λ ≡ 〈r1〉 =
∫ ∞

0
dτ1

∫
dv1 P̃1(v1)(v1τ1)

= 1

π (1 + m1/m2)1/2 n2σ
2
12

. (B7)

Here the relation r1 = v1τ1 has been used. From these re-
sults and taking into account Eq. (1) and that v̄ = λ〈μ〉 =
(8kBT/πm1)1/2, one gets

DeKT = 1

3π (1 + m1/m2)1/2 n2σ
2
12

√
8kBT

πm1
(B8)

for hard spheres.
With the expression (B4) at hand, one can evaluate the

mean persistence ratio as

ω =
∫

P̃2(1, 2)
v2

v1
cos θ12dv1dv2dτ1dτ2, (B9)

or, equivalently, as

ω =
〈
v2

v1
cos θ12

〉
= 1

〈μ〉
∫

f (v1)W (v1, v2)
v2

v1
cos θ12dv1dv2. (B10)

The integral (B10) can be evaluated explicitly (see
Eq. (5.51,2) of Ref. [1]) and the result is

ω = m1/m2 + ω̃(m1/m2)

1 + m1/m2
, (B11)

where

ω̃(m) = m

2

[
m√

1 + m
ln

(
1 + √

1 + m√
m

)
− 1

]
. (B12)

Figure 4 shows the mean persistence ratio ω (apart from the
ratios ck/ck−1) as a function of the mass ratio m1/m2. We
see that ω is smaller than unity unless m1/m2 → ∞. This
implies that the approximation Eq. (39) is excellent, except
when m1/m2 becomes very large. The fact that ω → 1 when
m1  m2 makes sense since when the intruder is heavier than
the particles of the gas, it retains more of its trajectory and
velocity after collisions. Conversely, if m1/m2 → 0, then we
see that ω → 0. This is because the lighter the intruder, the
less capacity it has to keep its trajectory and velocity after
collisions.

APPENDIX C: ASYMPTOTIC EXPRESSIONS
OF THE PDF P(�) OF THE FREE PATH

In this Appendix we provide the asymptotic expressions for
the pdf P(�) given in Eq. (54) when m → 0 and/or m → ∞
(for � finite) and when � → ∞ (for m finite). The expression
of P(�) in the case of a light intruder moving in a sea of
very massive molecules can be obtained from the asymptotic
evaluation of the integral I�(x, m) of Eq. (55) for m → 0. In
this limiting case, only large values of y are relevant in the
integrand of I�(x, m). Thus, when y → ∞, E (y) ∼ √

π y and
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I�(x, m → 0) behaves as

I�(x, m → 0) ∼ π e−x
∫ ∞

0
y3e−my2

dy

∼ π

2m2
e−x. (C1)

Introducing this result into Eq. (54), one gets

λP(�) ∼ exp(−�/λ) (C2)

for m → 0.
An asymptotic expression in the opposite limit of a very

massive intruder moving in a sea of very light particles (m →
∞) can also be obtained when one realizes that for m → ∞
only small values of y are relevant in the integrand of I�(x, m).
Taking into account that E (y) ∼ 2 for y → 0, one finds

I�(x, m) ∼ 4
∫ ∞

0
y exp

[
−my2 − 2x

y
√

π (1 + m)

]
dy

∼ 2x2

(1 + m)π3/2
G 3,0

0,3

[
−1,− 1

2 , 0

∣∣∣∣ mx2

(1 + m)π

]
,

(C3)

where G 3,0
0,3 is a Meijer G function. Substituting Eq. (C3)

into Eq. (54), and taking the limit m → ∞ in the resulting
expression, one finds

λP(�) ∼ 4

π3/2
G3,0

0,3

(
0, 1

2 , 1

∣∣∣∣ �2

πλ2

)
. (C4)

From the behavior of the Meijer G function G3,0
0,3 for small and

large arguments [21], one gets

λP(�) ∼ 4

π
(C5)

for small �/λ, and

λP(�) ∼ 8√
3π2/3

(
�

λ

)1/3

exp

[
− 3

π1/3

(
�

λ

)2/3
]

(C6)

for large �/λ. Finally, for �/λ → ∞ but finite m, only large
values of y are relevant in the integrand of I�(x, m). In this
case,

I�(x, m) ∼ πe−x/
√

1+m
∫ ∞

0
y3 e−my2

dy

∼ π

2m2
e−x/

√
1+m (C7)

and, hence, λP(�) behaves as

λP(�) ∼ 1

1 + m
exp

(
− �/λ√

1 + m

)
. (C8)

For m = 1 this expression reduces to that obtained in
Ref. [19]. When m = 0, the asymptotic form of P(�) for
m → 0 is recovered.

APPENDIX D: DIRECT SIMULATION
MONTE CARLO METHOD

The DSMC method is employed in this paper to assess
the various approximations made for calculating both the

coefficients of the reduced collisional series ck and the dif-
fusion coefficient DRW.

In the context of a rarefied gas regime dominated by
collisions, the DSMC method emerges as an alternative yet
complementary approach for solving the Boltzmann equation.
Originally introduced by Bird [24], classical DSMC simula-
tions were specifically designed to address rarefied gas flows
that are computationally inaccessible via molecular dynamics
simulations [13,25]. In this work, we follow similar steps as
those proposed by Pöschel and Schwager [26] to solve the
Boltzmann equation for a mixture composed by hard spheres.

The simulation is initiated by drawing the particle ve-
locities from the corresponding Maxwell distribution fi [see
Eq. (43)] at an initial temperature T0 for each species i. The
discretized distribution function f (Ni )

i of species i is derived
from the velocities {vk} of Ni “virtual particles” as given by:

f (Ni )
i (v; t ) → ni

Ni

Ni∑
k=1

δ[v − vk (t )], (D1)

where δ is the Dirac delta function. For low-density regimes,
since the collisions are assumed to be instantaneous, the free
flight of particles and the collision stage can be temporally
decoupled. The DSMC method maintains this assumption,
leading to a division into two distinct steps: the convective
and collision stages. However, since our simulations assume
equilibrium for the molecular gas, only the collision stage is
detailed here. The “general” procedure can be summarized as
follows:

(1) To simulate collisions between particles of species i
and j, a required number of N�t

i j candidate pairs for collision
in a time �t is selected. This number is determined by [26]:

N�t
i j = πNin jσ

2
i jg

max
i j �t, (D2)

where Ni is the total number of simulated particles of species
i, and gmax

i j is an upper bound for the average relative velocity
between two particles. A suitable estimate is gmax

i j = Cvth
i j ,

where vth
i j = √

2T0/m is the mean thermal velocity, m = (mi +
mj )/2, and C is a constant, e.g., C = 5 [13].

(2) A colliding direction σ̂k� for a pair of colliding par-
ticles labeled as k and � is randomly selected with equal
probability.

(3) The collision is accepted if

|̂σk� · gk�| ≡ |̂σk� · (vk − v�)| > R(0, 1)gmax
i j , (D3)

where R(0, 1) is a uniformly distributed random number in
the interval [0,1].

(4) If the collision is accepted, then the velocities of parti-
cles are updated according to the scattering rules [14]:

vk → vk − 2μ ji(gk� · σ̂k� )̂σk�,

v� → v� + 2μi j (gk� · σ̂k� )̂σk�, (D4)

being μi j = mi/(mi + mj ).
(5) Repeat the procedure for all the permutations of i = 1,

2 and j = 1, 2.
Since our interest lies in studying a mixture where one

species is present in tracer concentration, certain modifica-
tions are made to the algorithm. Assuming i ≡ 1 (intruders)
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and j ≡ 2 (molecular gas), collisions 1-1 are neglected, and
when a collision 1-2 or 2-1 occurs, only the velocity of the
intruder is modified according to the scattering rules given
in step 4. Although the molecular gas is inherently in equi-
librium, described by the Maxwell distribution, it is crucial
to consider collisions between molecules (labeled as 2-2) in
the algorithm. This consideration helps prevent correlations
stemming from a distribution biased by the initial velocities
assigned to the finite number of molecules N2.

We measure the diffusion coefficient D of an intruder
immersed in a dilute gas at equilibrium by employing the
Einstein relation:

D = 1

6�t
[〈R2(t + �t )〉 − 〈R2(t )〉]. (D5)

Here 〈· · · 〉 denotes the average over the N1 intruders.

1. Coefficients of the reduced collisional series ck

To measure the projection over a free path of the sub-
sequent nth free path, we must track the trajectory of the
intruders between collisions to find rn. What one would be
tempted to do would be to perform averaging of r1 · rk over
the subset of realizations where the algorithm detects the
very first collision of the intruder with a molecule of the gas.
However, this first accepted collision is likely to be one in
which the relative velocity between the colliding particles is
quite large, biasing the distribution function of the particles
involved in the averaged quantities [see Eq. (D3)]. Therefore,
to avoid that, the coefficients ck are computed by considering
the position of the intruder after every collision n by

ck = 2
〈rn · rn+k〉〈

r2
n

〉 . (D6)

This ensures that fi is the correct one.
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