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Mean square displacement of intruders in freely cooling multicomponent granular mixtures

Rubén Gómez González *

Departamento de Didáctica de las Ciencias Experimentales y las Matemáticas,
Universidad de Extremadura, E-10004 Cáceres, Spain

Santos Bravo Yuste †,‡ and Vicente Garzó §,‖
Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx),

Universidad de Extremadura, E-06006 Badajoz, Spain

(Received 16 September 2024; accepted 14 November 2024; published 11 December 2024)

The mean square displacement (MSD) of intruders (tracer particles) immersed in a multicomponent granular
mixture made up of smooth inelastic hard spheres in a homogeneous cooling state is explicitly computed. The
multicomponent granular mixture consists of s species with different masses, diameters, and coefficients of
restitution. In the hydrodynamic regime, the time decay of the granular temperature of the mixture gives rise to
a time decay of the intruder’s diffusion coefficient D0. The corresponding MSD of the intruder is determined
by integrating the corresponding diffusion equation. As expected from previous works on binary mixtures, we
find a logarithmic time dependence of the MSD which involves the coefficient D0. To analyze the dependence of
the MSD on the parameter space of the system, the diffusion coefficient is explicitly determined by considering
the so-called second Sonine approximation (two terms in the Sonine polynomial expansion of the intruder’s
distribution function). The theoretical results for D0 are compared with those obtained by numerically solving
the Boltzmann equation by means of the direct simulation Monte Carlo method. We show that the second Sonine
approximation improves the predictions of the first Sonine approximation, especially when the intruders are
much lighter than the particles of the granular mixture. In the long-time limit, our results for the MSD agree with
those recently obtained by Bodrova [Phys. Rev. E 109, 024903 (2024)] when D0 is determined by considering
the first Sonine approximation.
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I. INTRODUCTION

Granular materials in both nature and industry are usually
characterized by some degree of polydispersity in both mass
density and size. Due to the differences in mass and/or size
of particles of each species, multicomponent mixtures exhibit
particle segregation or demixing [1,2]. Thus, the study of
transport properties in multicomponent granular mixtures is
relevant not only from a fundamental point of view but also
from a practical perspective.

When granular matter is subjected to an external excitation,
the energy input supplied to the grains can compensate for
the energy dissipated through collisions. In this situation, the
motion of grains is quite similar to the chaotic motion of
atoms or molecules in a conventional fluid. In this regime
(referred to as rapid flow conditions), the collisions of grains
play a relevant role in their dynamics and hence, kinetic theory
tools (conveniently adapted to take into account the dissipa-
tive character of collisions) have been employed in the last
few years [3–5] to analyze granular flows. In particular, for
sufficiently dilute systems, granular materials can be modeled
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as a gas of smooth inelastic hard spheres where the inelasticity
of collisions is only characterized by a constant coefficient of
normal restitution.

The fact that the collisions between grains are inelastic
implies that their diffusive motion will eventually stop in the
absence of an external excitation. For this reason, most of
the studies of diffusion in granular systems have been carried
out in driven steady states [6–10]. However, diffusion can
also be studied in freely cooling systems, specifically in the
homogeneous cooling state (HCS). The detailed analysis of
diffusive transport in the HCS for multicomponent granular
mixtures can be considered as an important goal with some
as yet open questions. For example, understanding how varia-
tions in particle sizes affect diffusion is crucial for optimizing
pharmaceutical mixers.

To the best of our knowledge, the first works on the
diffusion of an intruder in a freely cooling granular gas
were focused on two limiting cases: (i) the self-diffusion
problem (intruder is mechanically equivalent to the parti-
cles of the granular gas) [11–13] and the Brownian limit
(intruder is much heavier than the particles of the granular
gas) [14,15]. In both limiting cases, Haff’s law [16] for the
granular temperature yields a diffusion coefficient that de-
cays in time. This dependence gives rise to a logarithmic
time dependence of the mean square displacement (MSD)
of intruder. A more recent study has extended these previ-
ous findings to arbitrary values of the intruder-grain mass
ratio [17].
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All previous works [11–15,17] refer to the diffusion of
the intruder in a granular gas. However, studies on intruder
diffusion in multicomponent or polydisperse granular systems
are much scarcer. We are aware of only a very recent work
[18] where the MSD of granular particles in a multicomponent
granular mixture (containing an arbitrary number of species
with different masses and diameters) under HCS has been
explicitly determined. Although this work fills an important
gap in the granular literature, the results derived in Ref. [18]
are based on a simplifying assumption that was not explicitly
stated in the paper: the MSD of species k was determined
by considering the so-called first Sonine approximation to the
partial diffusion coefficient Dk . However, as has been clearly
shown in previous works on binary granular mixtures [19–24],
the first Sonine approximation to Dk exhibits significant de-
viations from computer simulation data when the intruder is
much lighter than the particles of the granular gas. These
differences are clearly mitigated when considering the next
correction to Dk , namely the second Sonine approximation to
Dk . The question then arises as to whether and if so to what
extent, the conclusions drawn from Ref. [18] may change
when the second Sonine correction to Dk is accounted for in
the theory.

In this paper, we address the above question by determining
the MSD of the intruder in a multicomponent granular mixture
using both the first and second Sonine approximations for
the diffusion coefficient. As occurs in binary systems under
HCS [19,20], the comparison between theory and the numer-
ical results obtained from the direct simulation Monte Carlo
(DSMC) method [25] shows that while the first and second
approximations to the intruder diffusion coefficient D0 yield
practically the same results when the intruder is heavier than
the particles of the multicomponent mixture, the second So-
nine approximation provides a significant improvement over
the first one when the intruder is lighter than the particles of
the multicomponent mixture in the range of large inelastic-
ity. It is also important to remark that our derivation of the
MSD is slightly different from the one provided in Ref. [18].
Nevertheless, we demonstrate that in the case that the intruder
is mechanically equivalent to one of the species (let us say,
for instance, the species k), our expression of the MSD of the
species k agrees with the expression obtained in Ref. [18] for
a three-dimensional system when the diffusion coefficient Dk

is determined from the first Sonine approximation.
The plan of the paper is as follows. The analysis of the

HCS of a multicomponent granular mixture composed of s
species is reviewed in Sec. II. As noted in previous works
[26–31], the energy equipartition is broken down and the par-
tial temperatures Ti (which measure the mean kinetic energy
of species i) differ from each other. On the other hand, at
long times, the temperature ratios Ti/Tj are independent of
time. The explicit form of the MSD of the intruders immersed
in a multicomponent granular mixture is derived in Sec. III.
As expected [17], the logarithmic time dependence of the
MSD arises from Haff’s cooling law. Given that the MSD is
written in terms of the intruder diffusion coefficient D0, this
transport coefficient is determined in Sec. IV by considering
the first and second Sonine approximations. The theoretical
predictions of D0 from both approximations are compared
against Monte Carlo simulations in Sec. V in the case of a

ternary mixture where one of the species is present in tracer
concentration. The influence of the number of species in the
multicomponent granular mixture on the tracer diffusion co-
efficient D0 is analyzed in Sec. VI while the paper ends in
Sec. VII with some concluding remarks.

II. MULTICOMPONENT GRANULAR MIXTURES IN HCS

We consider an isolated multicomponent granular mixture
of inelastic hard disks (d = 2) or spheres (d = 3) of masses
mi and diameters σi (i = 1, 2, . . . , s). The subscript i labels
one of the s mechanically different species or components and
d is the dimension of the system. For simplicity, we assume
that the spheres are completely smooth; this means that the
inelasticity of collisions between particles of species i and
j is only characterized by the constant (positive) coefficient
of normal restitution αi j � 1. The coefficient αi j measures
the ratio between the magnitude of the normal component
(along the line separating the centers of the two spheres at
contact) of the relative velocity after and before the collision
i- j. For relatively low densities, a kinetic theory description is
appropriate, and the one-particle velocity distribution function
fi(r, v, t ) of species i verifies the set of s-coupled nonlinear
integrodifferential Boltzmann kinetic equations [5].

We assume that the granular mixture is in a spatially
homogeneous state. In contrast to conventional (molecular)
mixtures of hard spheres, there is no longer an evolution
towards the Maxwellian distributions for fi since they are not
a solution to the homogeneous set of Boltzmann equations.
Instead, when one considers homogeneous initial conditions,
there is a special solution which is reached after a few colli-
sion times: the so-called HCS solution [26,32]. In the HCS,
the set of Boltzmann equations read

∂

∂t
fi(v; t ) =

s∑
j=1

Ji j[v| fi, f j], (1)

where the Boltzmann-Enskog collision operator Ji j is given
by [5]

Ji j[v1| fi, f j] = σ d−1
i j χi j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [
α−2

i j fi(v′′
1; t ) f j (v′′

2; t ) − fi(v1; t ) f j (v2; t )
]
.

(2)

Here, σ i j = σi j σ̂, σi j = (σi + σ j )/2, σ̂ is a unit vector directed
along the line of centers from the sphere of component i
to that of component j at contact, � is the Heaviside step
function, and g12 = v1 − v2 is the relative velocity of the col-
liding pair. Moreover, χi j refers to the pair correlation function
for particles of species i and j when they are separated a
distance σi j . In Eq. (2), the relationship between the pre-
collisional velocities (v′′

1, v′′
2 ) and the postcollisional velocities

(v1, v2) is

v′′
1 = v1 − μ ji

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (3)

v′′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (4)
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where μi j = mi/(mi + mj ). Note that in the HCS the Enskog
equation becomes identical to the Boltzmann equation except
for the presence of the pair correlation function χi j .

The most relevant hydrodynamic field in the HCS is the
granular temperature T . It is defined as

T = 1

dn

s∑
i=1

∫
dv miv

2 fi(v), (5)

where n = ∑
i ni is the total number density and

ni =
∫

dv fi(v) (6)

is the number density of species i. The balance equation of T
in the HCS is

∂T

∂t
= −ζT, (7)

where the cooling rate ζ can be written as [5]

ζ (t ) = π (d−1)/2

2d	
(

d+3
2

) s∑
i=1

s∑
j=1

σ d−1
i j χi j

mimj

mi + mj

(
1 − α2

i j

)
×

∫
dv1

∫
dv2g3

12 fi(v1; t ) f j (v2; t ). (8)

Although the relevant temperature at a hydrodynamic level is
the global temperature T , it is also convenient to introduce
the partial temperatures Ti for each species. They measure the
mean kinetic energy of species i. They are defined as

Ti = 1

dni

∫
dv miv

2 fi(v). (9)

According to Eqs. (5) and (9),

T =
s∑

i=1

xiTi, (10)

where xi = ni/n is the mole fraction (or concentration) of
species i.

For symmetry reasons, the mass and heat fluxes vanish
in the HCS and the pressure tensor Pk
 = pδk
, where the
hydrostatic pressure p is [33]

p = nT

[
1 + πd/2

d	
(

d
2

) s∑
i=1

s∑
j=1

μ ji n σ d
i jχi jxix j (1 + αi j )γi

]
,

(11)

where γi = Ti/T is the temperature ratio of species i. The rate
of change of the partial temperatures Ti(t ) can be analyzed
by the “partial cooling rates” ζi. These quantities provide the
rate of change of the mean kinetic energy of species i due to
collisions between themselves and with particles of different
species ( j �= i). To obtain the evolution of Ti one multiplies
both sides of Eq. (1) by mi

2 v2 and integrates over velocity. The
result is

∂Ti

∂t
= −ζiTi, (12)

where

ζi(t ) =
s∑

j=1

ζi j (t ), ζi j = − 1

dniTi

∫
dvmiv

2Ji j[ fi, f j].

(13)

The total cooling rate ζ can be expressed in terms of the partial
cooling rates ζi as

ζ (t ) =
s∑

i=1

xiγi(t )ζi(t ). (14)

The time evolution of the temperature ratios γi(t ) can be easily
derived from Eqs. (7) and (12) as

∂γi

∂t
= γi(ζ − ζi ), i = 1, . . . , s. (15)

As said before, the term ζii gives the contribution to the
partial cooling rate ζi coming from the rate of energy loss from
collisions between particles of the same species i. This term
vanishes for elastic collisions but is different from zero when
αii < 1. The remaining contributions ζi j (i �= j) to ζ represent
the transfer of energy between a particle of species i and par-
ticles of species j. In general, ζi j �= 0 (i �= j) for both elastic
and inelastic collisions. However, for elastic collisions, when
the distribution functions fi are Maxwellian distributions at
the same temperature (Ti = T for any species i), then ζi j = 0
(i �= j). This occurs because of detailed balance, where the
energy exchange between species is exactly countered by
energy conservation for this state.

As widely discussed in Ref. [26], the detailed balance state
for inelastic collisions is the HCS. In this state, since the
partial ζi and total ζ cooling rates never vanish, the partial
Ti and total T temperatures are always time dependent. As for
monocomponent granular gases [32], regardless of the initial
uniform state considered, we expect that the Boltzmann–
Enskog equation (1) tends towards the HCS solution where all
the time dependence of the distributions fi(v; t ) occurs only
through the (total) temperature T . In this sense, the HCS solu-
tion qualifies as a normal or hydrodynamic solution since the
granular temperature T (t ) is in fact the relevant temperature
at a hydrodynamic level. Thus, it follows from dimensional
analysis that the distributions fi(v; t ) have the form

fi(v; t ) = niv
−d
th (t )ϕi

(
v

vth(t )

)
, (16)

where

vth(t ) =
√

2T (t )

m
(17)

is a thermal velocity defined in terms of the total tempera-
ture T (t ) of the mixture and m = ∑s

i=1 mi/s. In Eq. (16),
the temperature dependence of the reduced distributions ϕi

is through the dimensionless velocity v/vth. According to
the definition (9) for the partial temperatures Ti and the
HCS solution (16) for fi, it follows that all temperatures
{T1, . . . , Ts, T } are proportional to each other and their ratios
are independent of time. One possibility would be that T1 =
. . . = Ts = T , as happens in the case of molecular mixtures
(elastic collisions). However, the ratios γi (i = 1, . . . , s) must
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be determined by solving the set of Boltzmann-Enskog equa-
tions (1). Results derived from kinetic theory [26], computer
simulations [27–30,34–39], and even real experiments [40,41]
have clearly shown that the temperature ratios are in general
different from 1; they exhibit in fact a complex dependence on
the parameter space of the mixture.

Since the temperature ratios γi achieve a time-independent
value in the hydrodynamic regime, then according to Eq. (15),
the partial cooling rates ζi must be equal in the HCS:

ζ1(t ) = ζ2(t ) = · · · = ζs(t ) = ζ (t ). (18)

The last identity in Eq. (18) is based on the fact that
ζ = ζi

∑
i xiγi = ζi. The constraint (18) allows us to deter-

mine the s − 1 independent temperature ratios γi.
The left-hand side of the Boltzmann-Enskog equation (1)

can be more explicitly written when one takes into account
Eq. (16) for the distributions fi:

∂ fi

∂t
= ∂ fi

∂T

∂T

∂t
= 1

2
ζ

∂

∂v
· (v fi ). (19)

Therefore, in dimensionless form, Eq. (1) reads

1

2
ζ ∗

i

∂

∂c
· (cϕi ) =

s∑
j=1

J∗
i j[c|ϕi, ϕ j], (20)

where

ζ ∗
i = ζi

ν
, c = v

vth
, J∗

i j[ϕi, ϕ j] = vd
th

niν
Ji j[ fi, f j]. (21)

Here,

ν(t ) = nσ d−1vth(t ) (22)

is an effective collision frequency and σ = 1
s

∑s
i=1 σi. The use

of ζ ∗
i instead of ζ ∗ = ζ/ν on the left-hand side of Eq. (20) is

allowed by Eq. (18); this choice is more convenient since the
first few velocity moments of Eq. (20) are directly obtained
without any specification of the distributions ϕi.

Therefore, we are in front of a well-possed mathematical
problem since we have to solve the set of s Boltzmann-Enskog
equations (1) for velocity distribution functions fi(v; t ) of the
form (16) and subject to the s − 1 constraints (18). These
2s − 1 equations must be solved to determine the s distribu-
tions fi and the s − 1 temperature ratios γi. As in the case of
monocomponent granular gases, approximate expressions for
the above quantities are obtained by considering the first few
terms of the expansion of the distributions fi in a series of
Sonine (or Laguerre) polynomials [26,31].

A. Haff ’s cooling law

According to Eq. (13), explicitly computing the cooling
rates ζ (t ) requires to know the velocity distributions fi(v; t ).
However, since in the HCS the time dependence of ζ is solely
through

√
T , the cooling rate can be written as ζ (t ) = ν(t )ζ ∗,

where ζ ∗ = ζ ∗
i = ∑

j ζ
∗
i j is a time-independent quantity [see

for instance, the Maxwellian approximation to ζ ∗
i j given by

Eq. (25)]. Thus, the integration of Eq. (7) can be easily carried
out and the result is

T (t ) = T (0)(
1 + 1

2ζ (0)t
)2 , (23)

where T (0) is the initial temperature and ζ (0) denotes the
cooling rate at t = 0. Equation (23) is known as Haff’s cooling
law for the HCS [16]. Its form is formally identical to the one
derived for a monocomponent granular gas, except that ζ (0)
refers to the initial total cooling rate. According to Eq. (18),
ζ1(0) = · · · = ζs(0) = ζ (0).

B. Maxwellian approximation to ϕi

So far, all the results are exact. However, to obtain the
explicit dependence of the temperature ratios on the parameter
space of the system, one needs to know the scaled distribu-
tions ϕi(c). For binary [27–30] and ternary [31] mixtures, it
has been shown that the temperature ratios γi can be well
estimated by replacing ϕi(c) by its Maxwellian form, i.e.,

ϕi(c) → π−d/2θ
d/2
i e−θic2

, θi = miT

mTi
. (24)

In the Maxwellian approximation (24), the dimensionless
quantities ζ ∗

i j = ζi j/ν are given by [5]

ζ ∗
i j = 4π (d−1)/2

d	
(

d
2

) x jχi j

(σi j

σ

)d−1
μ ji(1 + αi j )

×
(

θi + θ j

θiθ j

)1/2[
1 − 1

2
μ ji(1 + αi j )

θi + θ j

θiθ j

]
. (25)

The (dimensionless) partial cooling rates ζ ∗
i can be easily

obtained from Eqs. (13) and (25). Substitution of the forms
of ζ ∗

i into the identities (18) yields in general nonlinear alge-
braic equations for γi whose numerical solutions provide the
dependence of the temperature ratios on the parameter space
of the system.

III. MEAN SQUARE DISPLACEMENT OF INTRUDERS
IN A MULTICOMPONENT GRANULAR MIXTURE

As usual in the study of the MSD, let us assume that some
impurities or intruders of mass m0 and diameter σ0 are added
to the multicomponent granular mixture. The intruders are in
general mechanically different from any of the species of the
mixture. Let us denote by α0i the coefficient of restitution for
collisions between the intruder and particles of the species i.
In general, α0i �= αi j for any species i and j.

Since the concentration of intruders is negligible, the state
of the mixture constituted by s species is not perturbed and
hence the HCS is still preserved. Formally, the resulting sys-
tem can be seen as a granular mixture of s + 1 species where
one of the species is present in tracer concentration. For the
sake of conciseness, we will thereafter refer to this system
as consisting of an intruder immersed in a multicomponent
granular mixture.

Under these conditions, the velocity distribution function
f0(r, v; t ) of the intruders obeys the kinetic equation

∂ f0

∂t
+ v · ∇ f0 =

s∑
i=1

J0i[ f0, fi], (26)

where the Enskog-Lorentz collision operator J0i[ f0, fi] gives
the rate of change of f0 due to the inelastic collisions between
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the intruders and particles of the species i. It is given by

J0i[v1| f0, fi] = σ d−1
0i χ0i

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [
α−2

0i f0(v′′
1 ) fi(v′′

2 ) − f0(v1) fi(v2)
]
. (27)

As in Eq. (2), g12 = v1 − v2 is the relative velocity, σ̂ is a unit
vector, and � is the Heaviside step function. In addition, χ0i is
the pair correlation function for intruders and particles of the
species i, and σ0i = (σ0 + σi )/2. In Eq. (27), the relationship
between (v′′

1, v′′
2 ) and (v1, v2) is

v′′
1 = v1 − (

1 + α−1
0i

)
μi0 (̂σ · g12 )̂σ, (28)

v′′
2 = v2 + (

1 + α−1
0i

)
μ0i (̂σ · g12 )̂σ, (29)

where

μi0 = mi

mi + m0
, μ0i = m0

mi + m0
. (30)

In a similar way, the collision rules for the direct collision
(v1, v2) → (v′

1, v′
2) with the same collision vector σ̂ are de-

fined as

v′
1 = v1 − (1 + α0i )μi0 (̂σ · g12 )̂σ, (31)

v′
2 = v2 + (1 + α0i )μ0i (̂σ · g12 )̂σ. (32)

Since the intruder may freely lose or gain momentum and
energy in its interactions with the multicomponent mixture,
these quantities are not invariants of the (inelastic) Enskog-
Lorentz collision operator J0i[ f0, fi]. Only the number density
of intruders

n0(r; t ) =
∫

dv f0(r, v; t ) (33)

is conserved. The continuity equation for n0 can be easily
obtained from the kinetic equation (26) as

∂n0

∂t
= −∇ · j0, (34)

where

j0(r; t ) =
∫

dv v f0(r, v; t ) (35)

is the intruder particle flux.
Equation (34) becomes a closed differential equation for

the intruder number density when one expresses the flux j0

in terms of n0. As usual, a constitutive equation for j0 can be
obtained by solving the Enskog-Lorentz kinetic equation (26)
by means of the Chapman-Enskog method [42] conveniently
adapted to dissipative dynamics. To first order in ∇n0, the
constitutive equation for j0 is

j0 = −D0∇n0, (36)

where D0(t ) is the time-dependent intruder diffusion coeffi-
cient. Substitution of Eq. (36) into Eq. (35) yields the diffusion
equation

∂x0

∂t
= D0(t )∇2x0, (37)

where x0 = n0/n is the concentration of the intruder particles.
As we know, in contrast to the usual diffusion equation for

molecular (elastic) gases, Eq. (37) cannot be directly inte-
grated in time because of the time dependence of the diffusion
coefficient D0. However, for times much longer than the mean
free time (hydrodynamic regime), D0(t ) adopts a form where
its dependence on time is only through its dependence on
the granular temperature T (t ) [5,11,19]. In addition, kinetic
theory calculations [19] show that D0(t ) can be expressed as
follows:

D0(t ) = T (t )

m0ν(t )
D∗

0, (38)

where the (dimensionless) diffusion transport coefficient D∗
0

depends on the parameter space of the system but it is a
time-independent quantity. An explicit, albeit approximate,
expression for the reduced diffusion coefficient D∗

0 can be ob-
tained by considering for instance the first and second Sonine
approximations to the Chapman-Enskog solution. The explicit
form of D∗

0 will be provided in Sec. IV.
As usual in freely cooling mixtures [17], the time depen-

dence of the diffusion equation D0(t ) can be eliminated by
introducing a set of appropriate dimensionless time τ and
space r′ variables:

τ =
∫ t

0
dt ′ν(t ′), r′ = r



. (39)

Here,


 = 1

nσ d−1 (40)

is a unit length (proportional to the mean free path of a
monocomponent molecular gas of hard spheres) and the di-
mensionless time variable τ measures the effective (average)
number of collisions per gas particle in the time interval be-
tween 0 and t . An explicit formula for τ (t ) is readily obtained
by making use of Haff’s law (23) in expression (22) of ν(t ) in
terms of the thermal velocity vth(t ). The time integral defining
τ (t ) then gives

τ (t ) = 2
ν(0)

ζ (0)
ln

(
1 + 1

2

ζ (0)

ν(0)
t∗

)
, (41)

where t∗ = ν(0)t . Note that for a multicomponente granular
mixture

ν(0)

ζ (0)
= 1

ζ ∗ = 1

ζ ∗
i

= 1∑s
j=1 ζ ∗

i j

, (42)

where ζ ∗
i j is given by Eq. (25) in the Maxwellian

approximation.
In terms of the variables τ and r′, the diffusion equa-

tion (37) becomes

∂x0

∂τ
= D̃0∇2

r′x0, (43)

where ∇2
r′ is the Laplace operator in the r′ coordinate and D̃0

is the dimensionless diffusion coefficient

D̃0 = 1

2

m

m0
D∗

0. (44)

As expected, Eq. (44) is thus a standard diffusion equa-
tion with a time-independent diffusion coefficient D̃0. It
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follows that the MSD of the intruder’s position r′ after a time
interval τ is

〈|�r′|2(τ )〉 = 2dD̃0τ, (45)

with �r′ ≡ r′(τ ) − r′(0). Then,

∂

∂τ
〈|�r′|2(τ )〉 = 2dD̃0. (46)

In terms of the original variables r and t , one has

∂

∂t
〈|�r|2(t )〉 = 2d

T (t )

m0ν(t )
D∗

0. (47)

Equation (47) can be seen as a generalization of the Einstein
formula relating the diffusion coefficient to the MSD. In terms
of the unit length 
, the MSD can be written as

〈|�r|2(t )〉 = 2d
m

m0

D∗
0

ζ ∗ ln

(
1 + 1

2
ζ ∗t∗

)

2. (48)

Under the assumptions made (hydrodynamic solution re-
stricted to first-order in ∇n0), Eq. (48) is exact and very
general, but D∗

0 and ζ ∗ need to be explicitly determined. In
the case of ζ ∗, as mentioned before, a good estimate of it is
provided by the Maxwellian approximation (24). In the case
of D∗

0, we will compute it by considering the two first terms
in a Sonine polynomial expansion of the first-order Chapman-
Enskog solution to the distribution function f0(r, v; t ).

When the intruder and particles of the multicomponent
mixture are mechanically equivalent (i.e, when m0 = mi, σ0 =
σi, and α0i = αi j , i, j = 1, · · · , s), Eq. (48) agrees with pre-
vious results derived for the self-diffusion problem [13,43].
Equation (48) also extends to multicomponent mixtures the
results obtained in Ref. [17] for binary systems.

It is quite apparent that for inelastic collisions Eq. (48)
shows that the MSD increases logarithmically with time. This
means that the diffusion of the intruder is ultraslow, namely, it
is even slower than in the case of subdiffusion. As occurs for
binary systems [17], the time-dependent argument of the log-
arithm of Eq. (48) is independent of the mechanical properties
of the intruder. This is essentially due to the fact that the time
dependence of the MSD is directly obtained from the Haff’s
cooling law (23), which only depends on the properties of
the multicomponent granular mixture through the initial total
cooling rate ζ (0).

IV. DETERMINATION OF THE DIFFUSION
COEFFICIENT D0

The goal of this section is to determine the diffusion co-
efficient D0 by means of the Chapman-Enskog method [42].
The analysis follows similar steps as those previously made
in the case of a binary mixture [19]. Thus, in the first-order
in ∇n0, the first-order distribution function f (1)

0 (r, v; t ) in the
Chapman-Enskog solution is given by

f (1)
0 (v) = A0(v) · ∇n0, (49)

where A0(v) verifies the integral equation

−ζT ∂TA0 −
s∑

i=1

J0i[A0, fi] = − f (0)
0

n0
v, (50)

and the expression of the collision operator J0i[A0, fi] can be
easily inferred from Eq. (27).

The diffusion coefficient D0 is defined as

D0 = − 1

d

∫
dv v · A0(v). (51)

As for elastic collisions [42], the linear integral equation (50)
may be approximately solved by expanding the unknown
A0(v) in a Sonine poynomial expansion. Here, we determine
D0 by considering contributions to A0 up to the second So-
nine approximation. In this approach, A0 reads

A0(v) → − f0,M(v)[a1v + a2S0(v)], (52)

where f0,M(v) is the Maxwellian distribution function

f0,M(v) = n0

(
m0

2πT0

)d/2

exp

(
−m0v

2

2T0

)
, (53)

and S0(v) is the polynomial

S0(v) =
(

1

2
m0v

2 − d + 2

2
T0

)
v. (54)

The Sonine coefficients a1 and a2 are defined as

a1 = − m0

dn0T0

∫
dv v · A0(v) = m0D0

n0T0
, (55)

a2 = − 2

d (d + 2)

m0

n0T 3
0

∫
dv S0(v) · A0(v). (56)

The evaluation of the coefficients a1 and a2 is carried out in
the Appendix A.

The expression of the reduced diffusion coefficient D∗
0 =

(m0ν/T )D0 depends on the Sonine approximation considered.
The first Sonine approximation D∗

0[1] to D∗
0 is

D∗
0[1] = γ0

ν∗
a,0 − 1

2ζ ∗ , (57)

where γ0 = T0/T and the expression of the (dimensionless)
collision frequency ν∗

a,0 is displayed in the Appendix B. The
second Sonine approximation D∗

0[2] to D∗
0 is given by

D∗
0[2] = γ0

(
ν∗

d,0 − 3
2ζ ∗)(

ν∗
a,0 − 1

2ζ ∗)(ν∗
d,0 − 3

2ζ ∗) − ν∗
b,0(ν∗

c,0 − ζ ∗)
. (58)

Here, the expressions of the (reduced) collision frequencies
ν∗

a,0, ν∗
b,0, ν∗

c,0, and ν∗
d,0 are also provided in the Appendix B.

A. Comparison with the results derived in Ref. [18]

We assume that the intruder is mechanically equivalent to
one of the species; let us denote by k this species. In this case,
D∗

0 = D∗
k and according to Eq. (48) the MSD of species k is〈

R2
k (t )

〉 ≡ 〈|�r|2(t )〉k

= 2d
m

mk

D∗
k

ζ ∗ ln

(
1 + 1

2
ζ ∗t∗

)

2. (59)

To compare with the MSD derived in Ref. [18], let us write
Eq. (59) in terms of the initial diffusion coefficient Dk (0):

Dk (0) = T (0)

mkν(0)
D∗

k , (60)
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where use has been of the fact that in the HCS the (dimen-
sionless) diffusion coefficient D∗

k is independent of time. The
explicit form of D∗

k depends on the Sonine approximation
considered. Taking into account that


2 =
(

vth(0)

ν(0)

)2

= 2T (0)/m

ν(0)2
, (61)

the MSD of species k can be rewritten as〈
R2

k (t )
〉 = 2dτ0Dk (0) ln

(
1 + t

t0

)
, (62)

where t0 = 2/ζ ∗ν(0). The first Sonine approximation D∗
k [1]

to D∗
k is

D∗
k [1] = γk

ν∗
a,k − 1

2ζ ∗ , (63)

where we recall that ζ ∗ = ζ ∗
i = ∑s

j=1 ζ ∗
i j is given by Eq. (25)

and

ν∗
a,k = 4π (d−1)/2

d	
(

d
2

) s∑
i=1

xiχki

(σki

σ

)d−1
μik

×
(

θi + θk

θiθk

)1/2
1 + αik

2
. (64)

In the three-dimensional case (d = 3), Eq. (62) agrees with
Eq. (64) of Ref. [18] (which provides the MSD at long times)
when D∗

k is evaluated by the first Sonine approximation,
Eq. (63) [44].

V. COMPARISON BETWEEN THEORY
AND MONTE CARLO SIMULATIONS

It is quite apparent that the theoretical results displayed
along Sec. IV for the diffusion coefficient D0 are approximate
since they have been obtained by considering one (first Sonine
approximation) or two (second Sonine approximation) terms
in the Sonine polynomial expansion of A0(V). The reliability
of both approaches can be assessed via a comparison with
computer simulations. Here, as in previous works for binary
systems [19,20], we numerically solve the Boltzmann equa-
tion for dilute granular mixtures (χi j → 1) by means of the
DSMC method [25]. Given that the diffusion of intruders in
a granular gas (binary mixture where one of the species is
present in tracer concentration) has been widely analyzed in
the above papers [19,20], we consider here a ternary system,
namely, the diffusion of intruders in a granular binary mixture
(s = 2).

The adaptation of the DSMC method to the case of gran-
ular mixtures has been described in previous works (see, for
instance, Ref. [27]). We will only mention in this section the
aspects related to our specific problem: diffusion of intruders
(or tracer particles) in a granular binary mixture under HCS.
Thus, in the tracer limit (x0 = n0/(n1 + n2) → 0) of a ternary
mixture constituted by species 0, 1, and 2, collisions 0 − 0 are
not considered. In addition, when collisions 0 − 1 and 0 − 2
take place, the postcollisional velocities from the scattering
rule [given by Eqs. (31) and (32)] are only assigned to the
intruder particle 0. In this context, the number of particles of

FIG. 1. Dependence of the ratio D*,sim
0 /D*,th

0 on the (dimen-
sionless) time τ0 for a ternary mixture with x1 = 0.5, m0/m1 = 3,
m0/m2 = 2, σ0 = σ1 = σ2, and three different values of the (com-
mon) coefficient of restitution αi j ≡ α: 0.9, 0.8, and 0.7. Here, D*,sim

0

refers to the simulation result of the dimensionless tracer diffusion
coefficient D∗

0 while D*,th
0 corresponds to its theoretical result ob-

tained from the first Sonine approximation.

each species Ni has only a statistical meaning and so, they can
be chosen arbitrarily.

Two different stages are distinguished during the simula-
tions. In the first stage, starting from a certain initial state, the
system (intruders and particles of the granular binary mixture)
evolves towards the HCS state. Once the system has reached
the HCS state (second stage), the kinetic temperatures Ti(t )
and the diffusion coefficient D0(t ) are measured. As usual,
the coefficient D0(t ) is obtained from the MSD of intruders
[Eq. (47)], i.e.,

D0(t ) = 1

6�t
[〈|ri(t + �t ) − ri(0)|2〉 − 〈|ri(t ) − ri(0)|2〉],

(65)

where a three-dimensional (d = 3) system has been consid-
ered. In Eq. (65), |ri(t ) − ri(0)| is the distance traveled by the
intruder from t = 0 until time t ; t = 0 being the beginning of
the second stage. In addition, the average 〈. . .〉 is done over
the N0 intruders and �t is the time step.

According to Eq. (38), the validity of a hydrodynamic
description implies necessarily that the time dependence of
the diffusion coefficient D0(t ) only occurs via the square
root of the granular temperature T (t ) (D0(t ) ∝ √

T (t ) for
hard spheres). Thus, the dimensionless diffusion coefficient
D∗

0 must reach a constant value independent of time after a
transient regime. Our simulation results clearly show that D∗

0
reaches a stationary value in all the systems simulated in the
work. To illustrate this behavior, we plot in Fig. 1 the ratio
D*,sim

0 /D*,th
0 versus the (dimensionless) time τ0, defined as

the average number of collisions experienced by the tracer
particles up to a time t . The relationship between τ0(t ) and
τ (t ) is given in the Appendix C. In Fig. 1, we consider a
ternary mixture with x1 = n1/(n1 + n2) = 0.5, m0/m1 = 3,
m0/m2 = 2, σ0 = σ1 = σ2, and three different values of the
(common) coefficient of restitution αi j ≡ α: 0.9, 0.8, and
0.7. Moreover, D*,sim

0 refers to the simulation result of the
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FIG. 2. Temperature ratios Ti/T versus the (common) coefficient
of restitution α for the cases I, II, III, and IV described in Table I.
The solid lines and circles correspond to T0/T , the dashed lines and
squares refer to T1/T , while the dotted lines and triangles correspond
to T2/T . Symbols are the DSMC results while lines are the theoreti-
cal results.

dimensionless tracer diffusion coefficient D∗
0 while D*,th

0 cor-
responds to its theoretical result obtained from the first Sonine
approximation. As occurs for binary systems (see Fig. 3 of
Ref. [19]), we observe that after a certain number of colli-
sions, D*,sim

0 /D*,th
0 reaches a time-independent plateau, which

value fluctuates around 1. This means that the value of the
coefficient D∗

0 measured in the simulations agrees very well
with the one obtained from the Boltzmann kinetic equation.
Additionally, we can observe that the transition to the steady
state takes more time the lower the value of α. This is because,
in these specific simulations, the initial values of the particle
velocities are sampled from Maxwellian distributions at the

FIG. 3. Plot of the (reduced) tracer diffusion coefficient
D0(α)/D0(1) as a function of the (common) coefficient of restitution
α for the cases I, II, III, and IV described in Table I. The solid
and dashed lines refer to the theoretical results obtained from the
second and first Sonine approximations, respectively, while the sym-
bols (circles) refer to the DSMC results. Here, D0(1) denotes the
elastic-limit value of the coefficient D0 consistently obtained in each
approximation.

same temperature. As the inelasticity increases, the break-
down of energy equipartition becomes more pronounced, and
therefore, the longer it takes for the velocity distributions to
relax to their stationary forms.

Four different cases or systems have been considered in the
simulations. In all of them we consider a three-dimensional
system with a common coefficient of restitution αi j ≡ α. The
values of concentration, masses, and diameters of the different
systems are displayed in Table I. In the two first cases (Cases
I and II), we have considered a ternary system with identical
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TABLE I. Three-dimensional systems considered in the com-
puter simulations.

Case x1
σ0
σ1

σ0
σ2

m0
m1

m0
m2

I 0.5 1 1 3 2

II 0.8 1 1 1
2

1
4

III 0.5 21/3 51/3 2 5

IV 0.9 10
3

1
2

(
10
3

)3 1
8

diameters (σ0 = σ1 = σ2) but different masses. In the cases
III and IV, we have assumed that intruders and particles of the
species 1 and 2 have the same mass density, namely, m0/m1 =
(σ0/σ1)3 and m0/m2 = (σ0/σ2)3. Furthermore, since we are
essentially interested in studying the influence of dissipation
on the tracer diffusion coefficient, we have normalized D0(α)
with respect to its value for elastic collisions (αi j = 1). Thus,
the steady values of the ratio D0(α)/D0(1) obtained from sim-
ulation data are compared against their theoretical predictions
obtained by considering the first [Eq. (57)] and second Sonine
[Eq. (58)] approximations. The theoretical elastic value D0(1)
has been consistently obtained in each approximation.

Before considering the diffusion coefficient, we study first
the dependence of the temperature ratios γ0 = T0/T , γ1 =
T1/T , and γ2 = T2/T on the coefficient of restitution. Note
that in the tracer limit γ2 = (1 − x1γ1)/(1 − x1), so that only
two of the temperature ratios are independent. Figure 2 shows
the dependence of the temperature ratios on inelasticity for
the cases considered in Table I. The ratios γi are obtained as
described at the end of Sec. II B. As expected, is it quite ap-
parent that the total energy is not equally distributed between
the different species. This means that there is a breakdown
of energy equipartition in granular mixtures. As mentioned
in Sec. II, the lack of energy equipartition in granular mix-
tures has been confirmed in many computer simulation works
[27–30,35–39,45–49] as well as in real experiments of agi-
tated [40,41] and freely cooling [50] mixtures. In addition,
the lack of energy equipartition has dramatic consequences
in the case of a large impurity/gas mass ratio since there is a
peculiar “phase transition” with one phase where the diffusion
coefficient grows without bound [51,52].

As occurs for binary systems, it is quite apparent in Fig. 2
that for large differences in the mass ratios m0/m1 and m0/m2

the temperature ratios depart significantly from 1, even for
relatively weak dissipation (say for instance, α � 0.8). We
also observe that in general the temperature of the heavier
species is larger than that of the lighter ones. Moreover, de-
spite that the temperature ratios γi have been estimated by
considering the simple Maxwellian approximations (24) to
the scaled distributions ϕi, the theoretical predictions for γi

exhibit in general an excellent agreement with the DSMC
results, even for strong inelasticities.

We consider now the (dimensionless) diffusion coefficient
D0(α)/D0(1). Based on the previous results obtained for a
binary system [19], one would expect that the first and second
Sonine approximations practically coincide in the Rayleigh
gas limit (namely, when the mass and/or the diameter of
the intruder is larger than that of the granular gas particles)

while both approximations appreciably differ in the Lorentz
gas limit (namely, when the mass and/or the diameter of the
intruder is smaller than that of the granular gas particles).
Figure 3 shows the α dependence of D0(α)/D0(1) for the four
cases displayed in Table I. In case I, the mass of the intruder
is larger than the mass of the particles of the granular gas
mixture (a Rayleigh-like scenario). It is quite apparent from
Fig. 3 that both Sonine approximations (Sonine of order 1
and Sonine of order 2) are close to each other in this case,
although the second approximation is clearly better than the
first one, especially when the collisional inelasticity is large
(let’s say for instance, α � 0.6). Case II is the opposite of case
I: now the intruder mass is smaller than that of the particles
of the granular mixture (a Lorentz-like scenario). We observe
that the two Sonine approximations differ significantly, espe-
cially for strong inelasticity. In addition, we see that while
the first Sonine approximation clearly overestimates the com-
puter simulation data, the agreement of the second Sonine
approximation with the results of the DSMC is excellent in the
complete range of values of α analyzed. In case III, the mass
density of all particles (intruder and gas grains) is the same,
but the particles of the granular mixture are larger and heavier
than the intruder. This case is thus closer to the Rayleigh limit,
and again we find that the two Sonine approximations give
quite similar results. Finally, in case IV, the mass density of
all particles is again the same, but now the grains of species
1 are larger and heavier than the intruder, while the grains of
species 2 are smaller and lighter than the intruder. However,
since most of the grains are of species 1 (since x1 = 0.9), the
scenario is more Rayleigh-like than Lorenz-like. As expected,
we find that the two Sonine approximations give similar
results, although again the second Sonine solution is the
best, providing again a very good agreement with the DSMC
results.

In summary, our results for the diffusion of intruders in
a binary granular mixture (ternary system) share similarities
with those previously reported [19] for a binary system: The
second Sonine approximation clearly improves on the first So-
nine approximation, especially when the intruders are lighter
than the particles of the surrounding granular binary mixture.
In the latter case, the first Sonine solution for D0 clearly
overestimates the simulation data, while the second Sonine
approximation agrees very well with the DSMC results even
for large values of the inelasticity.

VI. TRACER DIFFUSION IN A
MULTICOMPONENT MIXTURE

Although the theoretical expressions (57) and (58) of the
first and second Sonine approximations, respectively, for the
tracer diffusion coefficient hold for an arbitrary number of
species, the results presented in Sec. V have focused on the
case of a ternary mixture (intruders immersed in a granular
binary mixture). In the present section, we analyze the effect
of increasing the polydispersity (number of species in the
mixture) on the diffusion coefficient D0 for three-dimensional
systems.

It is obvious that a complete study of the dependence of
D0 on the parameter space of the system is quite complex,
mainly due to the large number of parameters involved in
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(B)

(A)

FIG. 4. Plot of the (reduced) tracer diffusion coefficient
D0(α)/D0(1) as a function of the (common) coefficient of restitution
α for equimolar mixtures with s species of the same size, σ0/σi = 1.
The solid lines are obtained from the second Sonine approximation
(58) to D0. In (A) m0/mi = i and in (B) m0/mi = 1/i with i =
1, 2, . . . , s. In (a) s = 1, (b) s = 2, (c) s = 3, (d) s = 6, (e) s = 10.

the description of highly polydisperse granular systems. Here,
as in Figs. 2 and 3, we consider a three-dimensional system
with a common coefficient of restitution αi j ≡ α. In addition,
since we are mainly interested in evaluating the effect of
sizes and masses of the polydisperse system on diffusion, we
assume equimolar granular mixtures (x1 = x2 = · · · = xs =
1/s). Only the second Sonine approximation (58) is consid-
ered throughout this section to analyze the dependence of
the (reduced) tracer diffusion coefficient D0(α)/D0(1) on the
diameter and mass ratios, and the coefficient of restitution.

Our results are shown in Figs. 4 and 5. In Fig. 4, we fix
the diameter ratio of the mixture (σ0/σi = 1) and consider
different values of the mass ratios m0/mi (i = 1, 2, · · · , s).
In Fig. 5, we fix the mass ratio (m0/mi = 1) and consider
different values of the diameter ratios σ0/σi (i = 1, 2, · · · , s).
The combination of both plots allows us to measure the effect
of the diameter and mass ratios on the diffusion of intruders
in a granular mixture of s species.

Figures 4(A) and 4(B) show the dependence of the
(reduced) tracer diffusion coefficient D0(α)/D0(1) on the
restitution coefficient α for σ0/σi = 1 and mixtures consisting
of different numbers of species (s = 1, 2, 3, 6, and 10) with
different values of the mass ratio. In Fig. 4(A), the mass
distribution is m0/mi = i with i = 1, 2, . . . , s. In Fig. 4(B),
the mass distribution is m0/mi = 1/i with i = 1, 2, . . . , s.

We observe in Fig. 4 that the deviations of the diffusion
coefficient D0(α) from its form for elastic collisions increase
with increasing dissipation when the intruder is heavier than
the particles of the multicomponent mixture. However, ac-
cording to Fig. 4(B), the above tendency is not maintained
in the case of highly polydisperse granular mixtures when the

(A)

(B)

FIG. 5. Plot of the (reduced) tracer diffusion coefficient
D0(α)/D0(1) as a function of the (common) coefficient of restitution
α for mixtures of s species with the same mass, m0/mi = 1. The
solid lines are obtained from the second Sonine approximation (58)
to D0. In (A) σ0/σi = i and in (B) σ0/σi = 1/i with i = 1, 2, . . . , s.
In (a) s = 1, (b) s = 2, (c) s = 3, (d) s = 6, (e) s = 10.

intruder is lighter than the particles of the mixture (see the
case s = 10). In this case, the ratio D0(α)/D0(1) has a non-
monotonic dependence on α. Furthermore, for a given value
of the coefficient of restitution α, it is quite obvious that, when
we add particles lighter than the intruders to the mixture, the
(scaled) diffusion coefficient D0(α)/D0(1) increases, while
the opposite happens when the particles are heavier than the
intruders.

In Figs. 5(A) and 5(B), we illustrate the diffusion of the in-
truders in a granular mixture where the mass ratio m0/mi = 1
and the diameter distribution is defined as σ0/σi = i (A) and
σ0/σi = 1/i (B) with i = 1, 2, . . . , s. As in Fig. 4, we have
considered s = 1, 2, 3, 6, and 10. We observe different trends
from those found in Fig. 4. Thus, for a given value of α,
D0(α)/D0(1) decreases (increases) when we add particles to
the mixture that are smaller (larger) than the intruders. This
means that intruder’s diffusion is enhanced (hindered) with
respect to its elastic value by adding particles to the mixture
that are smaller (larger) than the intruders.

For a fixed value of the restitution coefficient, the results
shown in Figs. 4 and 5 can be easily summarized in terms
of the average particle mass density ρ p of the mixture: ρ p =∑s

i=1 ρi,p/s with ρi,p = mi/(πσ 3
i /6). We see that the lighter

the mixture (i.e., the smaller ρ p), the larger D0(α)/D0(1). On
the other hand, for a given mixture, in general, D0(α)/D0(1)
increases as inelasticity increases (i.e., as α decreases). How-
ever, this does not hold as more and more species with
increasing mass density ρi are added to the mixture. In this
case we find that D0(α)/D0(1) eventually decreases as α

decreases: see (e) of Fig. 4(B) (this also happens with (e) of
Fig. 5(B), although it is hardly noticeable due to the scale).
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VII. CONCLUDING REMARKS

The determination of the MSD of an intruder in a freely
cooling granular mixture is a very interesting and not com-
pletely understood problem. There are likely two different
reasons for which the problem is quite complex. First, there is
a large number of relevant parameters involved in the descrip-
tion of diffusion in granular mixtures. Second, there is also
a wide array of complexities that arise during the derivation
of kinetic theory models. Thus, to gain some insight into the
general problem, the first studies consider two limiting cases:
(i) when the intruder is mechanically equivalent to the parti-
cles of the granular gas (self-diffusion problem) [11–13], and
(ii) when the intruder is much more heavy than the particles
of the granular gas (Brownian limiting case) [14,15]. One of
the main conclusions in these studies is that the MSD of an
intruder presents a logarithmic time dependence. According
to Haff’s law [16], the origin of this logarithmic dependence
arises from the algebraic decay of the granular temperature.
These studies have been extended more recently to arbitrary
values of the intruder-grain mass and/or diameter ratios [53]
and even when the system is immersed in a molecular gas
(granular suspension) [10].

Very recently [18], Bodrova has extended all the previous
attempts to the case of granular mixtures with an arbitrary
number of mechanically different species. On the other hand,
to determine the expression of the MSD of the species k, one
needs to know the diffusion coefficient Dk (t ). This coefficient
is given in terms of the unknown Ak (v) which is in fact the
solution of the linear integral equation (50). Thus, as occurs
for molecular hard spheres mixtures [42], the above integral
equation cannot be exactly solved (except for the so-called
inelastic Maxwell models [54]) and hence, one has to ex-
pand Ak (v) in a Sonine polynomial expansion. In Ref. [18],
although not explicitly stated in the paper, the simplest first
Sonine approximation (a first order polynomial in the par-
ticle velocity v) to Ak (v) is only considered. Although this
approach can be accurate in some cases (for binary systems,
when the intruder is much heavier than the particles of the
granular gas), it yields a significant disagreement with com-
puter simulations when the intruder is much lighter than the
granular gas particles. In contrast, as has been widely shown
in several papers for binary systems [19–24], the second So-
nine approximation to the diffusion coefficient improves the
predictions of the first Sonine approximation since it leads in
most of the cases to an excellent agreement with computer
simulations. The determination of the tracer diffusion coeffi-
cient in a multicomponent granular mixture from the first and
second Sonine approximations has been one of the main goals
of the present contribution.

To assess the reliability of the Sonine approximations,
we have also numerically solved the Boltzmann equation by
means of the DSMC method [25] conveniently adapted to
dissipative dynamics. Our simulations have been focused on
the case of a ternary mixture where one of the species is
present in tracer concentration. Four different sorts of sys-
tems (displayed in Table I) have been considered. As happens
for binary systems [19], the comparison between theory and

computer simulations clearly shows the superiority of the
second Sonine solution over the first one, especially in case
II (mass of intruders smaller than that of the particles of the
granular gas) for strong inelasticity. In addition, the excellent
agreement found between the second Sonine approximation
to D0 and DSMC results (see Fig. 3) confirms the accuracy of
this theoretical expression for conditions of practical interest
in mixtures constituted by three species. We expect that this
good agreement will be kept in mixtures containing more than
three species.

We want also to remark that the derivation carried out
here for the MSD is slightly different to the one provided in
Ref. [18]. While in the above work [18] the MSD is obtained
from the velocity correlation function, here we identify the
MSD of an intruder immersed in a granular mixture through
the diffusion equation. In any case, when the intruder is me-
chanically equivalent to one of the species (say species k),
then the MSD of the species k derived here agrees with the
one obtained in Ref. [18] when the first Sonine approximation
to Dk is considered.

Although we have focused our study on the case of ternary
systems, our theory also applies to highly polydisperse gran-
ular systems. This allows us to examine the effect on intruder
diffusion within mixtures when additional species of different
masses and sizes are introduced. Specifically, we considered
equimolar mixtures containing 1, 2, 3, 6, and 10 mechanically
distinct species. As clearly shown in Figs. 4 and 5, the in-
fluence of varying the (average) particle mass density of the
mixture on the intruder diffusion coefficient D0 is generally
quite significant. When particles and intruders share a com-
mon coefficient of restitution, α, the diffusion coefficient D0

relative to its value for elastic collisions (α = 1) increases as
the (average) particle mass density of the mixture decreases.
For a given mixture, the diffusion coefficient typically also
increases as α decreases; however, this trend does not hold
when the average particle mass density of the mixture is
sufficiently high.

One of the main limitations of the present work is its
restriction to smooth inelastic hard spheres. This means that
inelaticity in collisions only affects to the translational de-
grees of freedom. The extension of the results derived here
to the case of inelastic rough hard spheres is an interesting
open problem. Although some attempts have been made in
the self-diffusion problem [55], it still remains to assess the
impact of particles’ roughness on diffusion when the intruder
and particles of the granular gas are mechanically different.
Another possible project may be the extension of the present
results to granular suspensions where the influence of the
interstitial fluid on grains can be modeled via a drag force plus
a stochastic-like Langevin term [10,56]. Work along these
lines is in progress.
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APPENDIX A: FIRST AND SECOND SONINE
APPROXIMATIONS TO THE DIFFUSION COEFFICIENT D0

In this Appendix we give some technical details on the de-
termination of the Sonine coefficients a1 and a2. Substitution
of Eq. (52) into the integral equation (50) yields

ζT ∂T (a1 f0Mv + a2 f0MS0) + a1

s∑
i=1

J0i[ f0Mv, fi]

+ a2

s∑
i=1

J0i[ f0MS0, fi] = − f (0)
0

n0
v. (A1)

Next, we multiply Eq. (A1) by v and integrate over the veloc-
ity. The result is(

νa,0 − 1

2
ζ

)
D0 + n0T 2

0

m0
νb,0 a2 = T0

m0
, (A2)

where use has been made of the identity a1 = (m0D/n0T0) and
we have taken into account that a1T ∝ T 1/2 and so T ∂T a1T =
(1/2)a1T . Moreover, we have introduced the quantities

νa,0 =
s∑

i=1

νa,0i, νa,0i = − m0

dn0T0

∫
dv v · J0i[ f0Mv, fi],

(A3)

νb,0 =
s∑

i=1

νb,0i, νb,0i = − m0

dn0T 2
0

∫
dv v · J0[ f0MS0, fi].

(A4)

If only the first Sonine correction is retained (a2 = 0), the
solution to Eq. (A2) is simply

D0[1] = T0/m0

νa,0 − 1
2ζ

. (A5)

Equation (A5) leads to Eq. (57).
To close the problem, one has to multiply Eq. (A2) by S0(v)

and integrate over v. After some algebra, one achieves the
result

(νc,0 − ζ )
m0D0

n0T 2
0

+
(

νd,0 − 3

2
ζ

)
a2 = 0, (A6)

where

νc,0 =
s∑

i=1

νc,0i, νd,0 =
s∑

i=1

νd,0i. (A7)

Here,

νc,0i = − 2

d (d + 2)

m0

n0T 2
0

∫
dv S0 · J0i[ f0Mv, fi], (A8)

νd,0i = − 2

d (d + 2)

m0

n0T 3
0

∫
dv S0 · J0i[ f0MS0, fi]. (A9)

In reduced units and using matrix notation, Eqs. (A2) and
(A6) can be rewritten as⎛⎝ν∗

a,0 − 1
2ζ ∗ γ 2

0 ν∗
b,0

ν∗
c,0−ζ ∗

γ 2
0

ν∗
d,0 − 1

2ζ ∗

⎞⎠(
D∗

0

a∗
2

)
=

(
γ0

0

)
. (A10)

Here, D∗
0 = (m0ν/T )D0, a∗

2 = n0T νa2, ν∗
a,0 = νa,0/ν, ν∗

b,0 =
νb,0/ν, ν∗

c,0 = νc,0/ν, and ν∗
d,0 = νd,0/ν. The solution to

Eq. (A10) gives the expression (58) of the second Sonine
approximation D∗

0[2] to D∗
0.

APPENDIX B: REDUCED COLLISION FREQUENCIES

To obtain the explicit dependence of D∗
0[2] and D∗

0[1] on
the parameter space of the system, one still needs to deter-
mine the quantities ν∗

a,0, ν∗
b,0, ν∗

c,0, and ν∗
d,0. According to

Eqs. (A3), (A4), (A7), (A8), and (A9), the above reduced
collision frequencies are given in terms of the quantities ν∗

a,0i,
ν∗

b,0i, ν∗
c,0i, and ν∗

d,0i. These quantities have been evaluated in
previous works when the distribution fi is approximated by
the Maxwellian distribution given by Eq. (C3).

To display the final expressions, it is convenient to intro-
duce the quantities

θ0 = m0T

mT0
, λ0i = μ0iθi − μi0θ0, (B1)

and θi defined in Eq. (24). In terms of these quantities, ν∗
a,0i,

ν∗
b,0i, ν∗

c,0i, and ν∗
d,0i are given, respectively, by

ν∗
a,0i = 2π (d−1)/2

d	
(

d
2

) xi

(σ0i

σ

)d−1
χ0iμi0(1 + α0i )

(
θ0 + θi

θiθ0

)1/2

, (B2)

ν∗
b,0i = π (d−1)/2

d	
(

d
2

) xi

(σ0i

σ

)d−1
χ0iμi0(1 + α0i )

[
θi

θ0(θi + θ0)

]1/2

, (B3)

ν∗
c,0i = 2π (d−1)/2

d (d + 2)	
(

d
2

)xi

(σ0i

σ

)d−1
χ0iμi0(1 + α0i )(θi + θ0)−1/2θ

−3/2
i θ

1/2
0 Ac, (B4)

ν∗
d,0i = π (d−1)/2

d (d + 2)	
(

d
2

)xi

(σ0i

σ

)d−1
χ0iμi0(1 + α0i )

(
θ0

θi(θ0 + θi )

)3/2[
Ad − (d + 2)

θi + θ0

θ0
Ac

]
, (B5)

where

Ac = (d + 2)(2λ0i + θi ) + μi0(θ0 + θi )
{
(d + 2)(1 − α0i ) − [(11 + d )α0i − 5d − 7]λ0iθ

−1
0

}
+ 3(d + 3)λ2

0iθ
−1
0 + 2μ2

i0

(
2α2

0i − d + 3

2
α0i + d + 1

)
θ−1

0 (θ0 + θi )
2 − (d + 2)θiθ

−1
0 (θ0 + θi ), (B6)
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Ad = 2μ2
i0θ

−2
0 (θ0 + θi )

2

(
2α2

0i − d + 3

2
α0i + d + 1

)
[(d + 2)θ0 + (d + 5)θi]

−μi0(θ0 + θi )
[
λ0iθ

−2
0 {(d + 2)θ0 + (d + 5)θi}{(11 + d )α0i − 5d − 7}

− θiθ
−1
0 {20 + d (15 − 7α0i ) + d2(1 − α0i ) − 28α0i} − (d + 2)2(1 − α0i )

]
+ 3(d + 3)λ2

0iθ
−2
0 [(d + 2)θ0 + (d + 5)θi] + 2λ0iθ

−1
0 [(d + 2)2θ0 + (24 + 11d + d2)θi]

+ (d + 2)θiθ
−1
0 [(d + 8)θ0 + (d + 3)θi] − (d + 2)(θ0 + θi )θ

−2
0 θi[(d + 2)θ0 + (d + 3)θi]. (B7)

APPENDIX C: COLLISION FREQUENCY
OF THE INTRUDERS

In this Appendix, we provide the relationship between the
dimensionless times τ0(t ) (defined as the average number of
collisions suffered by the intruders up to a time (t) and τ (t )
[defined by Eq. (39)]. To establish this relation one has to
evaluate the (average) collision frequency of the intruders
ν0(t ). For hard spheres, ν0(t ) is defined as

ν0(t ) =
s∑

i=1

ν0i(t ), (C1)

where

ν0i(t ) = n−1
0 σ d−1

0i χ0i

∫
dv1

∫
dv2

∫
d σ̂ �(̂σ · g12)

× (̂σ · g12) fi(v1; t ) f0(v2; t ), (C2)

where fi(v1; t ) and f0(v2; t ) are the velocity distribution func-
tions of the particles of the species i and the intruders,
respectively. The integrals appearing in Eq. (C2) are evaluated
here by considering the Maxwellian approximations to fi and
f0, namely,

fi(v1) → niπ
−d/2v−d

th θ
d/2
i e−θic2

1 , (C3)

f0(v2) → n0π
−d/2θ

d/2
0 v−d

th e−θ0c2
2 , (C4)

where ci = vi/vth. We recall that vth = √
2T/m,

θi = miT/(mTi ), and θ0 = m0T/(mT0). Thus, ν0i can be
rewritten as

ν0i(t ) = niσ
d−1
0i χ0i(θiθ0)d/2vth(t )Iν, (C5)

where we have introduced the dimensionless integral

Iν = π−d
∫

dc1

∫
dc2

∫
d σ̂ �(̂σ · g∗

12)(̂σ · g∗
12)e−θic2

1−θ0c2
2 .

(C6)

Here, g∗
12 = g12/vth. The integral Iν can be performed by the

change of variables x = c1 − c2, y = θic1 + θ0c2, with the

Jacobian (θi + θ0)−d . The integral Iν gives

Iν = π−d S2
d

π (d+1)/2 	
(

d+1
2

) (θi + θ0)−d
∫ ∞

0
dx xd e−ax2

×
∫ ∞

0
dy yd−1e−by2

, (C7)

where Sd = 2πd/2/	(d/2) is the total solid angle in d dimen-
sions, a ≡ θiθ0(θi + θ0)−1, b ≡ (θi + θ0)−1 and use has been
made of the result [32]∫

d σ̂ �(̂σ · g∗
12)(̂σ · g∗

12) = π (d−1)/2

	
(

d+1
2

) g∗
12. (C8)

The integral Iν gives

Iν = π (d−1)/2

	
(

d
2

) (θiθ0)−
d+1

2 (θi + θ0)1/2, (C9)

and hence, ν0i can be finally written as

ν0i(t ) = π (d−1)/2

	
(

d
2

) niσ
d−1
0i χ0i

(
θi + θ0

θiθ0

)1/2

vth(t )

= π (d−1)/2

	
(

d
2

) xi

(σ0i

σ

)d−1
χ0i

(
θi + θ0

θiθ0

)1/2

ν(t ). (C10)

The (dimensionless) time τ0(t ) is defined as

τ0(t ) =
∫ t

0
dt ′ν0(t ′) =

s∑
i=1

∫ t

0
dt ′ν0i(t

′). (C11)

Thus, according to Eq. (C10), the relationship between τ0(t )
and τ (t ) is

τ0(t ) =
∫ t

0
dt ′ τ (t ′)

s∑
i=1

A0i(t
′), (C12)

where

A0i ≡ π (d−1)/2

	
(

d
2

) xi

(σ0i

σ

)d−1
χ0i

(
θi + θ0

θiθ0

)1/2

. (C13)
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