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ABSTRACT

Mass transport of impurities immersed in a confined quasi-two-dimensional moderately dense granular gas of inelastic hard spheres is
studied. The effect of the confinement on granular particles is modeled through a collisional model (the so-called D-model) that includes an
effective mechanism to transfer the kinetic energy injected by vibration in the vertical direction to the horizontal degrees of freedom of grains.
The impurity can differ in mass, diameter, inelasticity, or the energy injection at collisions, compared to the gas particles. The Enskog–
Lorentz kinetic equation for the impurities is solved via the Chapman–Enskog method to first order in spatial gradients for states close to the
homogeneous steady state. As usual, the three diffusion transport coefficients for tracer particles in a mixture are given in terms of the solu-
tions of a set of coupled linear integral equations, which are solved by considering the lowest Sonine approximation. The theoretical predic-
tions for the tracer diffusion coefficient (relating the mass flux with the gradient of the number density of tracer particles) are compared with
both direct simulation Monte Carlo and molecular dynamics simulations. The agreement is in general good, except for strong inelasticity
and/or large contrast of energy injection at tracer-gas collisions compared to gas-gas collisions. Finally, as an application of our results, the
segregation problem induced by both a thermal gradient and gravity is exhaustively analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0245373

I. INTRODUCTION

The study of transport properties of granular gases (modeled as a
gas of hard spheres undergoing inelastic collisions) confined in a given
direction is still a challenging open problem. In particular, one geometry
that has attracted the attention of many researchers is the so-called
quasi-two-dimensional geometry, namely, when the granular gas is con-
fined in a box whose vertical z-direction is slightly larger than one parti-
cle diameter.1–3 When the box is subjected to vertical vibrations, energy
is injected into the vertical degrees of freedom of the particles as they
collide with the plates of the system. This kinetic energy gained by the
particles is then transferred to the particles’ horizontal degrees of

freedom when they collide with each other. Under certain conditions, it
has been observed that the system maintains a homogeneous fluidized
state (as viewed from above) over a wide range of parameters.4

However, a kinetic theory description of the confined system
described above is quite intricate due basically to the restrictions
imposed by the confinement in the corresponding Boltzmann colli-
sional operator. Thus, although several attempts have been recently
made by considering the above approach,5–7 one can consider in a
more effective way the effect of the confinement on the dynamics of
granular particles via the collisional model proposed in Ref. 8. The idea
behind this collisional model is that the magnitude of the normal
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component of the relative velocity of the colliding particles is increased
by a constant factor D in each collision. The term associated with the
factor D in the corresponding collisional rule tries to mimic the transfer
of kinetic energy from the vertical degrees of freedom of granular par-
ticles to the horizontal ones. This sort of collisional model will be
referred to here as the D-model.

The D-model has been employed extensively in recent years to
study monocomponent granular gases. It has been applied to analyze the
homogeneous state,9,10 to obtain the Navier–Stokes transport coeffi-
cients,11 and to perform stability analyses of the time-dependent homo-
geneous state.12 Independently, the shear viscosity coefficient of a dilute
granular gas has been explicitly calculated and shows good agreement
with computer simulations.13 Extensions of these works to moderate
densities, within the framework of the Enskog kinetic equation, have also
been reported in several papers.14–16 In addition, the D-model has been
employed in the study of systems with long-range interactions,17 absorb-
ing states,18 and the formation of quasi-long-range ordered phases.19,20

More recently, the D-model has been also used to determine the
Navier–Stokes transport coefficients of dilute binary granular mixtures.21

As an application of this result, the stability analysis of the so-called
homogeneous steady state (HSS) and the segregation problem driven by
both a thermal gradient and gravity have been also studied in a subse-
quent paper.22,23 For now, the study of binary mixtures has only consid-
ered the Boltzmann kinetic equation as the starting point, so they are
restricted to the low-density regime. Thus, it is quite natural to extend
the analysis performed in Ref. 21 to the (revised) Enskog kinetic theory
for a description of hydrodynamics and transport at higher densities.

Needless to say, the evaluation of the Navier–Stokes transport
coefficients for a dense granular mixture is quite an intricate problem,
due mainly to the coupling between the different integral equations
obeying the complete set of transport coefficients. Thus, to gain some
insight into the general problem, we will make here a first approach to
the description of a general mixture by considering a more simple situ-
ation: we consider a granular binary mixture where the concentration
of one of the species (of massm0 and diameter r0) is very small (impu-
rity or tracer limit). In this situation, one can assume that (i) the state
of the dense granular gas (excess species of mass m and diameter r) is
not perturbed by the presence of tracer particles, and (ii) one can also
neglect collisions among tracer particles themselves in their corre-
sponding kinetic equation. Under these conditions, the velocity distri-
bution function f of the granular gas obeys a (closed) nonlinear Enskog
equation, while the velocity distribution function f0 of the tracer par-
ticles verifies a linear Enskog–Lorentz equation. At a kinetic level, the
tracer limit greatly simplifies the application of the Chapman–Enskog
method24 to a multicomponent granular mixture.

Since in the tracer limit the pressure tensor and the heat flux of
the mixture (impurities or tracer particles plus granular gas) are the
same as that for the excess species,14 the mass transport of impurities
j0 is the relevant flux of the problem. In accordance with previous
works on tracer diffusion in granular gases,25–27 the Navier–Stokes
constitutive equation for the mass flux (that is, linear in the spatial gra-
dients) can be written as

jð1Þ0 ¼ �m2
0

q
D0rn0 �mm0

q
Drn� q

T
DTrT; (1)

where q ¼ mn is the total mass density of the granular gas, n0 is the
number density of the tracer particles, n is the number density of the

gas particles, and T is the granular temperature. In addition, D0 is the
tracer diffusion coefficient, D is the mutual diffusion coefficient, and
DT is the thermal diffusion coefficient. The determination of the diffu-
sion transport coefficients D0, D, and DT is the main objective of the
present work. As for elastic collisions,24 these transport coefficients are
given in terms of the solutions of a set of coupled linear integral equa-
tions. These integral equations are approximately solved by consider-
ing the leading terms in a Sonine polynomial expansion. However, as
in the case of dilute granular mixtures,21 evaluating the diffusion coeffi-
cients in the time-dependent problem requires numerically solving a
set of nonlinear differential equations. To simplify the analysis, we
focus here on the relevant state of confined systems with steady granu-
lar temperature. This steady state allows for a more tractable approach
and enables the derivation of analytical expressions for D0, D, and DT

in terms of the parameter space of the system.
To assess the accuracy of the (approximate) theoretical results,

kinetic theory predictions for the tracer diffusion coefficient D0

obtained in the first Sonine approximation are confronted against
computer simulations carried out independently by both molecular
dynamics (MD)28–30 and the direct simulation Monte Carlo (DSMC)
method.31 As in previous works,27,32 the diffusion coefficient is com-
puted in the simulations from the mean square displacement (MSD)
of impurities immersed in a confined dense granular gas undergoing
the HSS.

Finally, since the explicit forms of the diffusion transport coeffi-
cients are at hand, a segregation criterion based on the thermal diffu-
sion factor is derived. Segregation, induced by both gravity and a
thermal gradient, shows the transition between the so-called Brazil-nut
effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the
parameters of the system. As expected, the corresponding phase dia-
grams characterizing the transition BNE/RBNE are different from
those previously obtained for inelastic hard spheres or disks (IHS).26,27

The plan of the paper is as follows. The D-model and the Enskog
equation are introduced in Sec. II for the granular gas, while Sec. III
deals with the Enskog–Lorentz kinetic equation for the tracer particles.
The application of the Chapman–Enskog method to solve the Enskog–
Lorentz equation to first order in spatial gradients is described in Sec.
IV. The corresponding integral equations obeying the diffusion trans-
port coefficients are also derived. Then, these integral equations are
approximately solved up to the first Sonine approximation in Sec. V.
Some technical details of the calculations are provided in Appendixes
A and B. The theoretical results for the tracer diffusion coefficient D0

are compared with both DSMC results and MD simulations for several
configurations in Sec. VI. Thermal diffusion segregation is analyzed in
Sec. VII, while the paper is closed in Sec. VIII with a brief discussion of
the reported results.

II. ENSKOG KINETIC EQUATION FOR A MODEL OF A
CONFINED QUASI-TWO DIMENSIONAL GRANULAR
GAS AT MODERATE DENSITIES
A. Collision rules in the D-model

We consider a set of solid particles or grains of massm and diam-
eter r. Under rapid flow conditions, the set can be modeled as a gas of
hard spheres with inelastic collisions. In the simplest case, the spheres
are assumed to be completely smooth, and hence, the inelasticity in
collisions is characterized by the (positive) constant coefficient of nor-
mal restitution a. As said in the Introduction, here we start from a
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collisional model (the D-model) for a quasi-two dimensional geometry
where grains are confined in the vertical direction. In this model, an extra
velocity D (which is assumed to be constant) is added to the relative
motion of the colliding spheres in such a way the magnitude of the normal
component of the relative velocity is increased by a given factor in each
binary collision. Thus, the relationship between the pre-collisional veloci-
ties ðv1; v2Þ and the post-collisional velocities ðv01; v02Þ in theD-model is8

v01 ¼ v1 � 1
2

1þ að Þðbr � g12Þbr � Dbr; (2)

v02 ¼ v2 þ 1
2

1þ að Þðbr � g12Þbr þ Dbr; (3)

where g12 ¼ v1 � v2 is the relative velocity and br is the unit collision
vector joining the centers of the two colliding spheres and pointing from
particle 1 to particle 2. Particles are approaching if br � g12 > 0. In Eqs.
(2) and (3), a is the (constant) coefficient of normal restitution defined in
the interval 0 < a � 1, andD (which has dimensions of velocity) is posi-
tive. This extra velocity is compatible with angular momentum conserva-
tion33 and points outward in the normal direction br. From Eqs. (2) and
(3) is quite simple to get the relative velocity after collision g012 as

g012 ¼ v01 � v02 ¼ g12 � ð1þ aÞðbr � g12Þbr � 2Dbr; (4)

so that

ðbr � g012Þ ¼ �aðbr � g12Þ � 2D: (5)

The collision rules (2) and (3) conserve momentum but energy is
not conserved. The change in kinetic energy upon collision is

DE � m
2

v021 þ v022 � v21 � v22
� �

¼ m D2 þ aDðbr � g12Þ �
1� a2

4
ðbr � g12Þ2

� �
: (6)

The right-hand side of Eq. (6) vanishes for elastic collisions (a¼ 1)
and D¼ 0. According to Eq. (6), DE > 0 (energy is gained in a binary
collision) if br � g12 < 2D=ð1� aÞ while DE < 0 (energy is lost in a
binary collision) if br � g12 > 2D=ð1� aÞ.

For practical purposes, it is also convenient to consider the resti-
tuting collision ðv001 ; v002Þ ! ðv1; v2Þ with the same collision vector br

v001 ¼ v1 � 1
2

1þ a�1ð Þðbr � g12Þbr � a�1Dbr; (7)

v002 ¼ v2 þ 1
2

1þ a�1ð Þðbr � g12Þbr þ a�1Dbr: (8)

From Eqs. (7) and (8), one gets the relationship

g0012 ¼ v001 � v002 ¼ g12 � ð1þ a�1Þðbr � g12Þbr � 2a�1Dbr; (9)

so that

ðbr � g0012Þ ¼ �a�1ðbr � g12Þ � 2a�1D: (10)

In addition, the volume transformation in velocity space in a direct
collision is dv01dv

0
2 ¼ adv1dv2, and so dv001dv

00
2 ¼ a�1dv1dv2.

B. Enskog kinetic equation

We assume that the granular gas is in the presence of a gravita-
tional field g. At a kinetic level, all the relevant information on the state
of the system is provided by the knowledge of the one-particle velocity

distribution function f ðr; v; tÞ. For moderate densities, this distribu-
tion verifies the Enskog kinetic equation8,9

@f
@t

þ v � rf þ g � @f
@v

¼ J r; vjf ; f½ �; (11)

where the Enskog collision operator J of the D-model reads

J r; v1jf ; f½ � � rd�1
ð
dv2

ð
dbrHð�br � g12 � 2DÞ

� ð�br � g12 � 2DÞa�2vðr; rþ rÞf ðr; v001 ; tÞ
� f ðrþ r; v002 ; tÞ � rd�1

ð
dv2

ð
dbrHðbr � g12Þ

� ðbr � g12Þvðr; rþ rÞf ðr; v1; tÞf ðrþ r; v2; tÞ: (12)

As in the case of the conventional IHS model,34,35 the quantity
ð�br � g12 � 2DÞa�2 appearing in the gain term of the Enskog collision
operator (12) arises from the length of the collision cylinder and the
Jacobian of the transformation ðv001 ; v002Þ ! ðv1; v2Þ. Like the
Boltzmann equation, the Enskog equation neglects velocity correla-
tions among particles that are about to collide, but it accounts for
excluded volume effects through the pair correlation function
vðr; r6 rÞ. In Eq. (12), HðxÞ is the Heaviside step function and d is
the dimensionality of the system (d¼ 2 for disks and d¼ 3 for
spheres). Note that although the system considered is two-
dimensional, the calculations worked out here will be performed by an
arbitrary number of dimensions d.

An important property of the Enskog collision operator is9,13

Iw �
ð
dv1 wðv1ÞJ r; v1jf ; f½ �

¼ rd�1
ð
dv1

ð
dv2

ð
dbrHðbr � g12Þðbr � g12Þ

� vðr; rþ rÞf ðr; v1; tÞf ðrþ r; v2; tÞ wðv01Þ � wðv1Þ
� �

; (13)

where v01 is defined by Eq. (2). The property (13) is the same as that of
the conventional model of IHS. A consequence of the relation (13) is
that the balance equations of the densities of mass, momentum, and
energy can be derived by following similar mathematical steps as those
made for IHS. They are given by14

Dtnþ nr � U ¼ 0; (14)

qDtUi þ @jPij ¼ qg; (15)

DtT þ 2
dn

@iqi þ Pij@jUi
� � ¼ �fT; (16)

where Dt � @t þ U � r is the material derivative, @i � @=@ri, and
q ¼ mn is the mass density. Summation over repeated indices is
assumed in Eqs. (15) and (16). In terms of the distribution f, the hydro-
dynamic fields n,U, and T are defined as

n; nU; dnTf g ¼
ð
dv 1; v;mV2
� 	

f ðvÞ; (17)

where

V ¼ v � U (18)

is the peculiar velocity. The forms of the pressure tensor Pij, the heat
flux q, and the cooling rate f in terms of the distribution f can be found
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in Ref. 14. In addition, the Enskog equation (11) has also been solved
by means of the Chapman–Enskog method24 and explicit expressions
for the Navier–Stokes transport coefficients and the cooling rate have
been derived by assuming steady state conditions.14,15

C. Homogeneous steady state

We consider the HSS in the absence of the gravitational field
(g ¼ 0). In this simple situation, the heat flux vanishes (q ¼ 0) and
the pressure tensor Pij ¼ pdij, where p is the hydrostatic pressure. It is
given by p ¼ nTp�, where14

p� ¼ 1þ 2d�2v/ð1þ aÞ þ 2dffiffiffiffiffi
2p

p v/D�: (19)

In Eq. (19), the solid volume fraction / is defined as

/ ¼ pd=2

2d�1dC
d
2

� � nrd; (20)

while D� ¼ D=v0, with v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
being the thermal velocity. Note

that here T means the steady state value of the granular temperature.
The quantity D� is a dimensionless parameter as the stationary tem-
perature T is proportional to D2 (see Ref. 13).

To get the relationship between D� and a, one has to give the
form of the pair correlation function v. In the case of a two-
dimensional system (d¼ 2), a good approximation for v is36

v ¼
1� 7

16
/

ð1� /Þ2 : (21)

Moreover, the velocity distribution function f ðvÞ is needed to
determine the cooling rate f. On the other hand, the exact form of
f ðvÞ in the HSS is not known to date. An indirect information on this
distribution is given through its fourth-degree moment or kurtosis a2;
this quantity measures the departure of the true distribution from its
Maxwellian form. Previous results of the D-model10 have clearly
shown that the magnitude of a2 is, in general very small in the HSS
(see Fig. 1 of Ref. 14). Thus, a good estimate of the cooling rate f can
be achieved by replacing f by the Maxwellian distribution

f ðvÞ ! fMðvÞ ¼ n
m
2pT

� �d=2

exp �mv2

2T

� �
: (22)

Using the approximation (22), f can be written as

f ¼
ffiffiffi
2

p
p

d�1
2

dC
d
2

� � nrd�1v0vð/Þ 1� a2 � 2D�2 �
ffiffiffiffiffi
2p

p
aD�� �

: (23)

In the HSS, @tT ¼ 0 and so Eq. (16) implies that the cooling rate
f¼ 0. The condition f¼ 0 yields a quadratic equation in D�, whose
physical solution is

D�ðaÞ ¼ 1
2

ffiffiffi
p
2

r
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð1� a2Þ

pa2

r
� 1

" #
: (24)

Recalling that D� ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
, Eq. (24) gives the value of the sta-

tionary temperature in terms of the imposed values of a and D.

Equivalently, in this dimensionless form, this result indicates that the
temperature evolves such that at the HSS D� is given by Eq. (24). As
expected, one concludes that the steady state for elastic particles is only
achieved for a vanishing extra velocity, that is, D�ð1Þ ¼ 0. Using MD
simulations, it has been shown that relation (24) remains accurate,
with deviations smaller than 2%, except for high densities and
inelasticities.8

Equation (24) predicts that in the HSS, the stationary temperature
diverges when a ! 1 if D is set fixed. This result has been verified in
MD simulations of the D-model (see Fig. 2 of Ref. 8). The same diver-
gence has been observed in MD of a three-dimensional system with
vibrating walls, with the stationary temperature scaling as the wall
velocity squared with a prefactor that depends on the box height (see
Fig. 4 of Ref. 37). Moreover, there is a qualitative agreement between
the stationary temperature T obtained in MD simulations37 and its
theoretical prediction provided by the D-model.13 Such agreement val-
idates the assumption of the D-model of considering a fixed value of D
and suggests that its value should depend on the vertical confinement
and scales with the wall velocity.

III. IMPURITIES IMMERSED IN A CONFINED GRANULAR
GAS

We suppose now that a few tracer or impurity particles of mass
m0 and diameter r0 are added to the granular gas. Since the concentra-
tion of the tracer species is negligibly small, their presence does not
perturb the state of the granular gas. This means that the velocity dis-
tribution function f ðr; v; tÞ still verifies the Enskog equation (11), so
the balance equations for the number density n, the mean flow velocity
U, and the temperature T for the granular gas are given by Eqs. (14),
(15), and (16), respectively. In addition, as mentioned in Sec. I, in this
paper we are mainly interested in the evaluation of the transport coeffi-
cients defining the mass flux of the impurities since, in the tracer limit,
the pressure tensor and the heat flux are the same as those of the gran-
ular gas (excess component).

Under the above conditions, the velocity distribution function
f0ðr; v; tÞ of the tracer particles satisfies the Enskog–Lorentz kinetic
equation

@f0
@t

þ v � rf0 þ g � @f0
@v

¼ J0 r; vjf ; f0½ �; (25)

where the Enskog–Lorentz collision operator J0 of the D-model reads21

J0 r; v1jf ; f½ � � �rd�1
ð
dv2

ð
dbrHð�br � g12 � 2D0Þ

� ð�br � g12 � 2D0Þa�2
0 v0ðr; rþ �rÞf0ðr; v001 ; tÞ

� f ðrþ �r; v002 ; tÞ � �rd�1
ð
dv2

ð
dbrHðbr � g12Þ

� ðbr � g12Þv0ðr; rþ �rÞf0ðr; v1; tÞf ðrþ r; v2; tÞ:
(26)

Here, �r ¼ �rbr; �r ¼ ðr0 þ rÞ=2; a0 � 1 is the (positive) coefficient of
restitution for impurity-gas collisions, and v0 is the pair correlation
function for impurity-gas pairs at contact. Note also that in Eq. (25)
the mutual interactions among the impurity particles have been
neglected as compared with their interactions with the particles of the
granular gas. In Eq. (26), the relationship between ðv001 ; v002Þ and
ðv1; v2Þ is
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v001 ¼ v1 �M 1þ a�1
0

� �ðbr � g12Þbr � 2MD0a
�1
0 br; (27)

v002 ¼ v2 þM0 1þ a�1
0

� �ðbr � g12Þbr þ 2M0D0a
�1
0 br; (28)

where

M ¼ m
mþm0

; M0 ¼ m0

mþm0
: (29)

Equations (27)–(28) yield the relationship

ðbr � g0012Þ ¼ �a�1
0 ðbr � g12Þ � 2D0a

�1
0 ; (30)

where g0012 ¼ v001 � v002.
Similarly, the collision rules for the direct collisions ðv1; v2Þ

! ðv01; v02Þ with the same collision vector br are defined as

v01 ¼ v1 �M 1þ a0ð Þðbr � g12Þbr � 2MD0br; (31)

v02 ¼ v2 þM0 1þ a0ð Þðbr � g12Þbr þ 2M0D0br: (32)

Equations (31)–(32) lead to the relationship

ðbr � g012Þ ¼ �a0ðbr � g12Þ � 2D0; (33)

where g012 ¼ v01 � v02.
The number density for the impurities is defined as

n0ðr; tÞ ¼
ð
dvf0ðr; v; tÞ: (34)

The impurities may freely loose or gain momentum and energy in its
interactions with the particles of the granular gas. Consequently, the
momentum and energy are not invariants of the collision operator
J0½vjf0; f �. Only the number density n0 is conserved; its continuity
equation can be directly obtained from Eq. (25) as

Dtn0 þ n0r � Uþr � j0
m0

¼ 0; (35)

where

j0 ¼ m0

ð
dv V f0ðr; v; tÞ (36)

is the mass flux for the impurities, relative to the local flow U.
Although the granular temperature T is the relevant one at a hydrody-
namic level, an interesting quantity at a kinetic level is the local tem-
perature of the impurities (or tracer particles) T0. This quantity
measures the mean kinetic energy of the impurities. It is defined as

T0ðr; tÞ ¼ m0

dn0ðr; tÞ
ð
dvV2f0ðr; v; tÞ: (37)

As confirmed by kinetic theory calculations and computer simula-
tions,38 the global temperature T and the temperature of impurities T0
are in general different. This means that the granular energy per parti-
cle is not equally distributed between both species of the mixture.

A. Homogeneous steady state for the impurities

Before considering inhomogeneous states for the impurities, it is
convenient to characterize the HSS. This state has been widely ana-
lyzed in Ref. 38 by theoretical approaches and computer simulations.
Since in the steady state @tT0 ¼ 0, then [analogously to Eq. (16)] the

temperature ratio T0=T is determined from the condition f0 ¼ 0.
Here, f0 is the cooling rate for the impurities in the HSS. As for the
granular gas, the velocity distribution function f0ðvÞ of the impurities
is not exactly known. However, as occurs in the calculation of the
global cooling rate f, a good estimate of f0 can be achieved by replacing
f by fM and f0 by the Maxwellian distribution

f0ðvÞ ! f0;MðvÞ ¼ n0
m0

2pT0

� �d=2

exp �m0v2

2T0

� �
: (38)

In this approximation, f0 ¼ �f�0 where � ¼ nrd�1v0 and f
�
0 is

38

f�0 ¼
4pðd�1Þ=2

dC
d
2

� � �r
r

� �d�1

Mv0ð1þ a0Þh�1=2 1þ hð Þ1=2

� 1� 1
2
Mð1þ a0Þð1þ hÞ

� �
� 4pd=2

dC
d
2

� � �r
r

� �d�1

Mv0D
�
0

� 2MD�
0ffiffiffi

p
p h1=2 1þ hð Þ1=2 � 1þMð1þ a0Þ 1þ hð Þ

� �
: (39)

Here, D�
0 ¼ D0=v0 and h ¼ m0T=mT0 is the ratio between the mean

square velocities of the impurity and particles of the granular gas. The
accuracy of estimate (39) is justified by the good agreement found
between the theoretical predictions of the temperature ratio T0=T
[which are based on Eq. (39)] and computer simulations.38

To obtain the dependence of the temperature ratio on the param-
eter space of the system, one needs to give the (approximate) form of
v0. As in the case of v, a good approximation for v0 for hard disks
(d¼ 2) is36

v0 ¼
1

1� /
þ 9
8

x
1þ x

/

ð1� /Þ2 : (40)

IV. DIFFUSION TRANSPORT COEFFICIENTS

The Chapman–Enskog method24 is applied in this section to
solve the Enskog–Lorentz equation (25) up to first order in spatial gra-
dients. As widely discussed in many textbooks,24,39 there are two differ-
ent stages in the relaxation of a molecular gas toward equilibrium. For
times of the order of the mean free time, a kinetic stage is first identi-
fied where the effect of collisions is to relax the gas toward the so-
called local equilibrium state. Then, a slow stage referred to as the
hydrodynamic regime is reached where the system has forgotten its ini-
tial conditions. The main feature of this regime is that the microscopic
state of the granular gas is governed by the hydrodynamic fields (in the
case of a binary mixture by n0, n, U, and T). The above two stages are
also expected in the case of granular gases except that in the kinetic
stage the distribution function will generally relax toward a time-
dependent nonequilibrium distribution (the homogeneous cooling
state in the conventional IHS model) instead of the local equilibrium
distribution. A crucial point is that although the granular temperature
T is not a conserved field (due to the inelastic character of the colli-
sions), it is assumed that T can still be considered as a slow field. This
assumption has been clearly supported by the good agreement found
between granular hydrodynamics and computer simulations in several
non-equilibrium situations.35,40 More details on the application of the
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Chapman–Enskog method to granular mixtures can be found, for
example, in Ref. 35.

Based on the above arguments, in the hydrodynamic regime, the
Enskog–Lorentz equation (25) admits a normal (or hydrodynamic)
solution where all the space and time dependence of f0 only occur
through a functional dependence on the hydrodynamic fields. As
usual,24 this functional dependence can be made explicit by assuming
small spatial gradients. In this case, f0 can be written as a series expan-
sion in powers of the spatial gradients of the hydrodynamic fields

f0 ¼ f ð0Þ0 þ f ð1Þ0 þ � � � ; (41)

where the approximation f ðkÞ0 is of order k in the spatial gradients. The
implementation of the Chapman–Enskog method to first order in the
spatial gradients follows similar steps as those made in the conven-
tional IHS model.25,27,41,42 Here, only the final results for the integral
equations verifying the diffusion transport coefficients will be
displayed.

The first-order distribution function f ð1Þ0 ðVÞ is given by

f ð1Þ0 ¼ A0 � rT þB0 � rn0 þ C0 � rnþD0;ijriUj þ E0r � U;
(42)

Note that the first-order distribution f ð1Þ0 is written in terms of the
spatial gradients of the hydrodynamic fields. According to the expla-
nation given at the beginning of the section, the granular tempera-
ture T is considered as a slow variable. In contrast, the partial
temperature T0 is a kinetic quantity that evolves more rapidly, and
its evolution is significantly influenced by the granular temperature
T. Therefore, there is no term proportional to rT0 in the expression
for f ð1Þ0 .

The quantities A0ðVÞ; B0ðVÞ; C0ðVÞ; D0;ijðVÞ, and E0ðVÞ
obey certain integral equations. Since we are interested here in obtain-
ing the diffusion transport coefficients, we will only pay attention to
the unknowns A0ðVÞ; B0ðVÞ, and C0ðVÞ (this is equivalent to
assume a nonequilibrium state with vanishing flow velocity).

The first-order contribution jð1Þ0 to the mass flux is given by Eq.
(1). In terms of A0;B0, and C0, the diffusion transport coefficients
DT, D0, and D are defined, respectively, as

DT ¼ �m0

qd

ð
dv V �A0 Vð Þ; (43)

D0 ¼ � q
m0n0d

ð
dv v �B0 Vð Þ; (44)

D ¼ � 1
d

ð
dv V � C0 Vð Þ: (45)

The unknowns A0ðVÞ;B0ðVÞ, and C0ðVÞ are the solutions of
the following set of coupled linear integral equations:

� fð0ÞT@TA0 � 1
2
fð0Þ 1� D� @ ln f

�

@D�

� �
A0 � Jð0Þ0 A0; f

ð0Þ
h i

¼ A0 þ Jð0Þ0 f ð0Þ0 ;A
h i

; (46)

�fð0ÞT@TB0 � Jð0Þ0 B0; f
ð0Þ

h i
¼ B0; (47)

�fð0ÞT@TC0 � Jð0Þ0 C0; f
ð0Þ

h i
¼ C0 þ fð0Þ 1þ /

@ ln v
@/

� �
�A0 þ Jð0Þ0 f ð0Þ0 ;C

h i
: (48)

In Eqs. (46)–(48), fð0Þ is the zeroth-order contribution to f and
f� ¼ fð0Þ=�. An explicit (but approximate) form of the cooling rate
fð0Þ is given by Eq. (23). In addition, the coefficients A0; B0, and C0

are given, respectively, by

A0ðVÞ ¼ �VT
@f ð0Þ0

@T
� p
q

1� 1
2
D� @ ln p�

@D�

� �
@f ð0Þ0

@V
�K0 T

@f ð0Þ

@T

� �
;

(49)

B0ðVÞ ¼ �Vn0
@f ð0Þ0

@n0
; (50)

C0ðVÞ ¼�Vn
@f ð0Þ0

@n
�m�1 @p

@n
@f ð0Þ0

@V
�ð1þxÞ�d

v0T
@l0
@/

� �
T;n0

K0 f ð0Þ
h i

:

(51)

Here, x ¼ r0=r is the diameter ratio, l0 is the chemical potential of
the impurity, and the operatorK0½X� is defined as

K0 X½ � ¼ ��rdv0

ð
dv2

ð
dbrHð�br � g12 � 2D0Þ

� ð�br � g12 � 2D0Þbra�2
0 f ð0Þ0 ðV00

1ÞXðV00
2Þ

þ �rdv0

ð
dv2

ð
dbrHðbr � g12Þðbr � g12Þbrf ð0Þ0 ðV1ÞXðV2Þ:

(52)

In addition,

Jð0Þ0 f ð0Þ0 ;X
h i

¼ �rd�1v0

ð
dv2

ð
dbrHð�br � g12 � 2D0Þ

� ð�br � g12 � 2D0Þa�2
0 f ð0Þ0 ðV00

1ÞXðV00
2Þ

� �rd�1v0

ð
dv2

ð
dbrHðbr � g12Þðbr � g12Þf ð0Þ0

� ðV1ÞXðV2Þ; (53)

and we have accounted for that the first-order distribution f ð1ÞðVÞ of
the granular gas is

f ð1ÞðVÞ¼AðVÞ �r lnTþCðVÞ �r lnnþDijðVÞriUjþEðVÞr �U;
(54)

where the quantitiesA, C; Dij, and E obey a set of coupled linear inte-
gral equations.43

As mentioned in several previous works,25,44 the explicit form of
the diffusion coefficient D requires the knowledge of the functional
derivative of the (local) pair distribution function v0 with respect to
the density n [see, for instance, Eq. (C.11) of Ref. 25]. However, in
view of the mathematical difficulties involved in evaluating this func-
tional derivative for granular gases, it is usually determined by requir-
ing that the expressions of the diffusion transport coefficients for
granular mixtures42 reduce for elastic collisions to those obtained
many years ago by L�opez de Haro et al.45 in the revised Enskog theory
for molecular mixtures of hard spheres. This is the reason for which
the chemical potential l0 is present in our theory [see Eq. (51)].
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Since granular gases are systems which are inherently in nonequi-
librium conditions, they lack a thermodynamic description, and thus
the use of the chemical potential concept might be questionable.
However, as mentioned before, the presence of the term @l0=@/ in
Eq. (51) results from the functional derivative of v0 with respect to the
gas density n. Here, as in previous works,44 for practical purposes the
expression used for l0 is the same as that obtained for an ordinary gas
mixture (a0 ¼ 1). Although this requires the use of thermodynamic
relations that hold only for elastic systems, we expect that this approxi-
mation could be reliable for not-strong values of inelasticity in colli-
sions. Further comparisons with computer simulations are needed to
confirm the above expectation. For molecular mixtures, the expression
for the chemical potential of the impurities consistent with the approx-
imation (40) is

l0
T

¼ ln ðk20n0Þ þ ln n0 � ln ð1� /Þ

þ 1
4
x

9/
1� /

þ ln ð1� /Þ
� �

� x2

8
/ð1� 10/Þ
ð1� /Þ2 � 8/

1� /
þ ln ð1� /Þ

" #
; (55)

where k0ðTÞ is the (constant) de Broglie’s thermal wavelength.46 The
use of Eq. (55) allows us to compute the derivative ð@l0=@/ÞT;n0 in
Eq. (51).

As for elastic collisions,24 to get explicit expressions for the diffu-
sion transport coefficients one considers the leading terms in a Sonine
polynomial expansion of the unknowns A0; B0, and C0. This task is
carried out in Sec. V.

V. FIRST-SONINE APPROXIMATION TO THE DIFFUSION
TRANSPORT COEFFICIENTS AT THE STATIONARY
TEMPERATURE

The lowest order Sonine polynomial approximations for
A0ðVÞ; B0ðVÞ, and C0ðVÞ are

A0 Vð Þ ! �f0;MðVÞ q

n0T
ð0Þ
0

VDT ; (56)

B0 Vð Þ ! �f0;MðVÞ m2
0

qTð0Þ
0

VD0; (57)

C0 Vð Þ ! �f0;MðVÞ m0

n0T
ð0Þ
0

VD; (58)

where Tð0Þ
0 is the zeroth-order contribution to the partial temperature

T0 and the Maxwellian distribution f0;MðVÞ is given by Eq. (38) with
the replacements v ! V and T0 ! Tð0Þ

0 . Moreover, in the lowest
Sonine approximation, A ¼ C ¼ 0, and then the impurities do not
inherit any first-order contribution coming from the granular gas.
This means that in the lowest Sonine approximation the integral equa-
tions (56) and (58) for A0 and C0, respectively, are not coupled to
their corresponding counterpartsA and C of the granular gas.

The transport coefficients D0, D, and DT are determined by sub-
stitution of Eqs. (56)–(58) into the integral equations (46)–(48), multi-
plication of them by m0V and integration over velocity. Some
technical details on this calculation are displayed in Appendix A. Here,
we provide the final expressions for the coefficients D0, D, and DT in
the relevant state of a two-dimensional confined granular mixture with

stationary temperature. In this case, fð0Þ ¼ fð0Þ0 ¼ 0 and the differential
equations (A3), (A10), and (A12) obeying the diffusion coefficients (in
dimensionless form) become linear algebraic equations.

The expressions of the diffusion transport coefficients D0, DT,
and D in the steady state are given, respectively, by

D0 ¼ qT
m2

0�

c0
��D

; (59)

DT ¼ n0T
q�

X�
0

��D þ 1
2
D� @f

�

@D�

; (60)

D ¼ n0T
m0�

Y�
0

��D
: (61)

In Eqs. (59)–(61), the dimensionless quantities ��D; X
�
0 , and Y�

0 are
given, respectively, by

��D ¼ 2p
d�1
2

dC
d
2

� � v0
�r
r

� �d�1

M
1þ h
h

� �1=2

ð1þ a0Þ þ
ffiffiffi
p

p
D�
0

" #
; (62)

X�
0 ¼ c0 1� 1

2
~D
� @ ln c0
@~D

�

� �
� l p� � 2d�1ffiffiffiffiffi

2p
p v/D�

 !

þ 2d
�r
r

� �d

/v0M0
1þ a0

2
þ D�

0ffiffiffi
p

p h
1þ h

� �1=2
" #

; (63)

Y�
0 ¼ �l p� þ /

@p�

@/

� �
þ /M0

@l0=T
@/

� �
T

1þ h
h

� �

� 1þ a0
2

þ 2D�
0ffiffiffi
p

p h
1þ h

� �1=2
" #

; (64)

where c0 ¼ Tð0Þ
0 =T; l ¼ m0=m is the mass ratio, and we have intro-

duced the shorthand notation

~D
� @

@~D
� � D� @

@D� þ D�
0

@

@D�
0
: (65)

Note that in the particular case D� ¼ D�
0, only one of the two terms of

the identity (65) must be considered. The evaluation of the derivative
~D
�
@~D

� appearing in Eq. (63) is performed in Appendix A.
Before considering some illustrative systems to assess the depen-

dence of the diffusion coefficients on the parameter space of the sys-
tem, it is quite instructive to pay attention to some limiting cases.

A. Mechanically equivalent particles

For mechanically equivalent particles (m¼m0, r ¼ r0; a ¼ a0,
and D ¼ D0), it is easy to see that X�

0 ¼ 0 and Y�
0 ¼ �1. In this case,

DT¼ 0 and D ¼ �ðn0=nÞD0, as expected. The mass flux j0 obeys the
constitutive equation

j0 ¼ �mD0rx0; (66)

where

D0 ¼
dC

d
2

� �
2pðd�1Þ=2

r1�d

v

ffiffiffiffi
T
m

r
1þ aþ

ffiffiffi
p
2

r
D�

 !�1

(67)

is the self-diffusion coefficient.
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B. Low-density limit

Let us consider now the low-density limit (/ ! 0). In this case,
to compare with the results derived in Ref. 21 for general concentra-
tion (or mole fraction) x0 � n0=n, it is convenient to express the con-
stitutive equation (1) in terms of the spatial gradients of x0, p¼ nT and
T. In this representation,

jð1Þ0 ¼ �mm0n
q

~Drx0 � q
p
~Dprp� q

T
~DTrT; (68)

where the relationship between the diffusion coefficients f~D; ~Dp; ~DTg
and D0;D;DTf g is

D0 ¼ l�1 ~D; D ¼ q
m0

~Dp � x0 ~D; DT ¼ ~Dp þ ~DT : (69)

In the dilute limit (/ ! 0), Eqs. (59)–(61) for the coefficients D0,
DT, andD reduce to

D0 ¼ qT
m2

0�

c0
��D

; D ¼ � n0T
m0�

l
��D

; (70)

DT ¼ n0T
q�

c0 1� 1
2
~D
� @ ln c0
@~D

�

� �
� l

��D þ 1
2
D� @f

�

@D�

; (71)

where ��D is given by Eq. (62) with v0 ¼ 1. Substitution of Eqs. (70)
and (71) into the relationships (69) yield

~D ¼ qT
mm0�

c0
��D

; (72)

~Dp ¼ x0
nT
q�

c0 � l
��D

; (73)

~DT ¼ �x0
nT
q�

~D
� @c0
@~D

� þ D� @f
�

@D� ~D
�
p

2��D þ D� @f
�

@D�

; (74)

where ~D
�
p ¼ ðq�=x0nTÞ~Dp. Equations (72)–(74) are consistent with

those obtained for dilute granular mixtures in the tracer limit
(x0 ! 0).21

The dependence of the (dimensionless) diffusion transport coeffi-
cients ~D

�ðaÞ=~D�ð1Þ; ~D�
pðaÞ=~D

�
pð1Þ, and ~D

�
TðaÞ on a (common)

coefficient of restitution a ¼ a0 is plotted in Fig. 1 for three different
two-dimensional (d¼ 2) mixtures. Note that as the plotted quantities
are dimensionless, they cannot depend on dimensional values like D,
but only in their dimensionless form D�. As the system is in the HSS,
the latter is given by Eq. (24), and therefore, all dimensionless quanti-
ties can be plotted simply as a function of the restitution coefficient.
Subsequent figures will adopt the same convention. In Fig. 1,
D� ¼ D�

0; ~D
� ¼ ðmm0�=qTÞ~D, and ~D

�
T ¼ ðq�=x0nTÞ~DT . Moreover,

~D
�ð1Þ and ~D

�
pð1Þ refer to the values of the diffusion coefficients for

elastic collisions (a¼ 1). The (dimensionless) thermal diffusion coeffi-
cient ~D

�
T has not been reduced with its elastic value because this coeffi-

cient vanishes when a¼ 1 for dilute gases in the first Sonine
approximation.24,47 As already noted in previous works,21 Fig. 1 shows
that the impact of inelasticity on the diffusion coefficients is in general
smaller than the one found in the conventional IHS model.48

Regarding the tracer diffusion coefficient ~D
�
, we see this coefficient

FIG. 1. Plot of the (dimensionless) diffusion coefficients ~D
�ðaÞ=~D�ð1Þ; ~D�

pðaÞ=
~D
�
pð1Þ, and ~D

�
T ðaÞ vs the (common) coefficient of restitution a ¼ a0 for d¼ 2,

/ ¼ 0, and three different binary mixtures: r0=r ¼ 2; m0=m ¼ 4 (a); r0=r ¼ 2;
m0=m ¼ 2 (b); and r0=r ¼ 0:2; m0=m ¼ 0:8 (c). Here, D� ¼ D�

0 and ~D
�ð1Þ

and ~D
�
pð1Þ refer to the values of the diffusion coefficients for elastic collisions

(a¼ 1).
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increases with respect to its elastic value as the inelasticity increases,
except when the impurity is smaller and/or lighter than the granular
gas particles; there exists a small region around a¼ 1 where the scaled
coefficient ~D

�ðaÞ=~D�ð1Þ exhibits a non-monotonic dependence on
inelasticity. In the case of the (scaled) coefficient ~D

�
pðaÞ=~D

�
pð1Þ, we

observe that it decreases with decreasing a (regardless of the value of
the diameter and/or mass ratio while the thermal diffusion coefficient
~D
�
TðaÞ can be positive or negative depending on the system consid-

ered. This behavior agrees qualitatively with what happens in the IHS
model.21 As will be shown later, the signature of the coefficient ~D

�
TðaÞ

is important in segregation problems induced by a thermal gradi-
ent.26,44,49–55

C. Some illustrative systems for moderate densities

Now, we want to assess the dependence of the (scaled) diffusion
coefficients on the parameter space of the system for a two-dimensional
system. The parameter space is constituted by the diameter r0=r and
massm0=m ratios, the coefficients of restitution a and a0, the solid vol-
ume fraction /, and the (dimensionless) parameters associated with the
energy injection at collisions D� and D�

0 ¼ kD� (k 	 0). The parameter
k is therefore a measure of the contrast of energy injection at tracer-gas
collisions compared to gas-gas collisions. Since we are mainly interested
in the influence of both inelasticity and density on mass transport, we
first analyze the usual case for binary mixtures, that is, when the com-
ponents differ only in their masses and diameters. Hence, we assume
here that a ¼ a0 and k¼ 1. In addition, because in the steady state D�

is only a function of a [see Eq. (24)], then the parameter space is
reduced to three parameters r0=r;m0=m; af g.

According to Eq. (59), the (dimensionless) tracer diffusion coeffi-
cient D�

0 ¼ ðm2
0�=qTÞD0 is given by

D�
0 ¼

c0
v0�

�
D
: (75)

Since the temperature ratio c0 is obtained from the condition f0 ¼ 0,
then it is independent of the density /. Consequently, according to Eq.
(62), the scaled coefficient D�

0ðaÞ=D�
0ð1Þ is independent of the density,

and hence, its dependence on a is the same as that of a dilute gas (see
Fig. 1). For this reason, we focus our attention now on the scaled coef-
ficients D�

TðaÞ=D�
Tð1Þ and D�ðaÞ=D�ð1Þ, where D�

T ¼ ðq�=n0TÞDT

and D� ¼ ðm0�=n0TÞD. As said before, D�
Tð1Þ and D�ð1Þ refer to the

values of D�
T and D�, respectively, for elastic collisions (a¼ 1).

According to Eq. (63), note that for dense gases X�
0 6¼ 0 and so,

D�
Tð1Þ 6¼ 0 when / 6¼ 0.

Figure 2 shows the dependence of the ratio D�
TðaÞ=D�

Tð1Þ on a
for three different values of the density /. Two different mixtures are
considered. We observe first that while this scaled coefficient exhibits a
non-monotonic dependence on inelasticity when both mass and diam-
eter ratios are smaller than 1, the ratio D�

TðaÞ=D�
Tð1Þ increases with

increasing inelasticity when the impurity is heavier and/or larger than
the particles of the granular gas. This behavior contrasts with the one
found in the conventional IHS (see the lines of the first Sonine solution
of Fig. 3 in Ref. 27). With respect to the influence of density, at a given
value of a, we see in general a weak effect of / on the (scaled) thermal
diffusion coefficient. To complement this figure, the (scaled) coefficient
D�ðaÞ=D�ð1Þ is plotted in Fig. 3 as a function of a for the same sys-
tems as those considered in Fig. 2. In contrast to D�

T , a stronger influ-
ence of density on D�ðaÞ=D�ð1Þ is observed. At a given value of a, this

scaled coefficient increases as the granular gas becomes denser when
m0 > m and r0 > r, but the opposite happens when the impurity is
lighter and/or smaller than the particles of the granular gas. As in the
case of D�

T , a comparison with the results obtained in the IHS model
(see the lines of the first Sonine solution of Fig. 2 in Ref. 27) shows again
a completely different qualitative behavior. As a general conclusion, our
results clearly show that the impact of inelasticity on mass transport for
a confined system (modeled via the D model) is less significant than the
one observed in freely cooling systems. This is the expected result based
on the previous work21 on dilute granular mixtures.

VI. COMPARISONWITH COMPUTER SIMULATIONS

The theoretical results derived for the diffusion transport coeffi-
cients are based on a relatively crude approximation: they have been
obtained by considering the leading term in a Sonine polynomial
expansion. Thus, it seems convenient to assess the accuracy of the
above theoretical results by comparing them with computer simula-
tions. Here, we compare expression (59) for the tracer diffusion

FIG. 2. Plot of the (dimensionless) transport diffusion coefficient D�
T ðaÞ=D�

T ð1Þ vs
the (common) coefficient of restitution a ¼ a0 for d¼ 2, two different binary mix-
tures (r0=r ¼ 2; m0=m ¼ 4 and r0=r ¼ 2; m0=m ¼ 0:4) and three different val-
ues of the solid volume fraction /: / ¼ 0 (a), / ¼ 0:1 (b), and / ¼ 0:2 (c). Here,
D� ¼ D�

0 and D
�
T ð1Þ refers to the value of D�

T for elastic collisions (a¼ 1).
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coefficient D0 with both numerical results obtained from the DSMC
method31 and from MD simulations.28–30 In this case, we consider the
diffusion of tracer particles in a granular gas of mechanically different
particles in the HSS. In this situation, rU ¼ 0; rn ¼ rT ¼ 0 and
so, the constitutive equation (42) can be written as

jð1Þ0 ¼ �m2
0n
q

D0rx0; (76)

where we recall that x0 ¼ n0=n. Then, the balance equation (35) for
the concentration becomes

@x0
@t

¼ m0D0

q
r2x0: (77)

Equation (77) is the standard diffusion equation with the time-
independent diffusion coefficient Dtracer ¼ m0D0=q. In simulations,
we can obtain the mean square displacement (MSD) of the tracer par-
ticles after a time interval t as

MSDðtÞ ¼ hjrðtÞ � rð0Þj2i; (78)

where jrðtÞ � rð0Þj is the distance traveled by the tracer particles from
t¼ 0 until the instant t. From it, the Einstein relation gives

Dtracer ¼ 1
2d

dMSDðtÞ
dt

: (79)

Equation (79) finally permits us to obtain the diffusion coefficient D0.
The DSMC method is a direct particle numerical method to find

solutions to the Boltzmann31 and Enskog56,57 kinetic equations, with-
out the need of considering uncontrolled approximations such as the
truncation of a Sonine polynomial expansion. Thus, in the limit of an
infinitely large number of particles and small time step, the DSMC
method provides the “exact” solution of the kinetic equation. It is
therefore an excellent method to assess the reliability of the theoretical
expression (59) for D0 obtained from the first Sonine approximation.
In practice, we consider N¼ 4000 particles, one of which is the tracer
particle, simulated in homogeneous conditions. This means that no
spatial grid is constructed during the simulations, and particles can col-
lide with all of them. Collisions, which are sampled statistically, are
performed following the collision rules (2)–(3) and (31)–(32). Since
the granular gas is in the HSS, the influence of the gas density nrd on
diffusion in the DSMC method enters only in fixing the collision rate.
Thus, as in the Enskog theory, the density dependence in the DSMC
method appears through the pair correlation factors at contact v and
v0 given by Eqs. (21) and (40), respectively. For the normalized trans-
port coefficients D�

0ðaÞ=D�
0ð1Þ, the Enskog theory predicts that the

result is independent of density as the collision frequencies cancel.
This allows us to use a single value for the density, with a value that is
immaterial as it only fixes the timescale. Finally, the time step is set
equal to one-fiftieth of the mean collision time in the gas.

MD simulations can be considered as an exact numerical solution
of the particle dynamics, following the collision rules (2)–(3) and (31)–
(32). As such, it makes no assumptions of molecular chaos, homogene-
ity, or normal solutions. Its results allow us to put strong tests on the
hypothesis behind the kinetic description made in this article. For MD,
we consider N¼ 4000 particles, one of them being the tracer, which
are simulated using the event-driven method28–30 in a square box with
periodic boundary conditions, and a box size adjusted to give the
desired particle density. Both in DSMC and MD, large simulations are
done to obtain convergence of the MSD.

A. Regimes in the mean square displacement

Figure 4 shows typical MSD curves obtained with MD simula-
tions. It is evident a first ballistic regime associated with the free
motion between collisions, lasting for a time of the order of the mean
collision time. At long times, a diffusive regime appears, which allows
us to obtain the diffusion coefficient using Einstein’s relation (79). In
cases of high density and small coefficients of restitution, three instead
of two regimes appear (see, for example, the curves (a) and (b) in
Fig. 4). First, there is the usual ballistic regime. It is followed by an
intermediate diffusive regime with a diffusion coefficient Dtransient and,
later, a second and definitive diffusive regime is established with a
smaller diffusion coefficient Dtracer. The measurements presented in
this paper are obtained in the last regime.

In the case of the DSMC method, only the ballistic and diffusion
regimes are obtained (not shown). This implies that the origin of this

FIG. 3. Plot of the (dimensionless) transport diffusion coefficient D�ðaÞ=D�ð1Þ vs
the (common) coefficient of restitution a ¼ a0 for d¼ 2, two different binary mix-
tures (r0=r ¼ 2, m0=m ¼ 4 and r0=r ¼ 2; m0=m ¼ 0:4) and three different val-
ues of the solid volume fraction /: / ¼ 0 (a), / ¼ 0:1 (b), and / ¼ 0:2 (c). Here,
D� ¼ D�

0 and D
�ð1Þ refers to the value of D� for elastic collisions (a¼ 1).
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anomalous behavior in MD can only be due to correlations neglected
in the kinetic description. Specifically, as in Fig. 4, the value of k¼ 4 is
chosen, and hence the tracer-particle collision is characterized by a
large value of D. Therefore, the tracer particle acts as a local energy
source, which is lately dissipated in the granular gas. As a result, the
granular gas is driven into an inhomogeneous state, hotter and more
dilute near the tracer. This changes the local environment for the tracer
particle, which can diffuse faster in this cloud, resulting in this larger
value of Dtransient. At longer times, the tracer itself must move the
cloud, and the diffusion of the dressed object is described by the long
term diffusion coefficient Dtracer.

Although the mechanism and the regimes found are different, the
presence of various regimes in the MSD has been previously observed
in MD simulations of freely cooling viscoelastic grains.58 The analysis
of this dynamical process and the relation with other systems present-
ing similar dynamics is beyond the scope of this manuscript and is left
to future work. Nevertheless, we would like to note that, despite its
complexity, the numerical values obtained in MD for Dtracer in general
have a good quantitative agreement (except for a rather strong inelas-
ticity) with the simple kinetic-theoretical prediction of D0 given by the
expression (59) (see especially Figs. 5 and 6 in Sec. VI B).

B. Diffusion coefficients

We consider three different cases for study. In case I, the tracer
particle has equal mass, diameter, and coefficient of restitution as the
particles of the granular gas; it differs in the energy injection at colli-
sions, with D0 ¼ kD. Figure 5 presents the diffusion coefficient nor-
malized to the elastic case D�

0ðaÞ=D�
0ð1Þ as a function of a for k ¼ 0:5

and 4. The theory predicts that the result is independent of density,
result that is trivially obtained in DSMC, because by the construction
of the method, the collision frequency scales out when the normalized
diffusion coefficient is plotted. As a consequence, only one density is
used for DSMC. In the case of MD simulations, several densities are
used, and there is an appreciable dependence on this parameter. We
observe that the normalized diffusion coefficient decreases with

increasing density, especially in the case of large contrast (k¼ 4). The
DSMC results show good agreement with the theory, with deviations
increasing for more inelastic conditions. This is expected as the theo-
retical prediction has been obtained considering up to the first Sonine
approximation, and DSMC results can be considered an “exact” solu-
tion of the kinetic equation. As expected from previous works27,32 for
tracer diffusion in the IHS model, going to larger inelasticities would
require using more higher order approximations to achieve more accu-
rate predictions. Regarding the MD simulations, the agreement is also
good, except for the large contrast case, with large inelasticities and
high densities. The deviations in these cases (which go in the opposite
direction of the DSMC results) are essentially due to correlations not

FIG. 5. Comparison with simulations: case I. Normalized diffusion coefficient
D�
0ðaÞ=D�

0ð1Þ as a function of the (common) coefficient of restitution a ¼ a0 for a
tracer particle of equal mass and diameter of the particles of the granular gas, but
with D0 ¼ kD, with k ¼ 0:5 (blue) and 4.0 (red). Theory in solid lines, DSMC
results with solid circles, and MD simulations with open symbols (nr2 ¼ 0:05,
crosses; nr2 ¼ 0:1, circles; nr2 ¼ 0:2 triangles; and nr2 ¼ 0:4 squares).

FIG. 6. Comparison with simulations: case II. Diffusion coefficient D�
0ðaÞ as a func-

tion of the diameter ratio r0=r for a tracer particle with the same mass density as
the particles of the granular gas [m0=m ¼ ðr0=rÞ2]. The (common) coefficient of
restitution is a ¼ a0 ¼ 0:8, the contrast parameter k � D0=D ¼ 2, and the
(reduced) density nr2 ¼ 0:1. Theory in solid lines, MD simulations with open
circles, and DSMC results with solid circles.

FIG. 4. Mean-square displacements for tracer particles obtained in MD. The simula-
tion parameters are nr2 ¼ 0:4; k � D0=D ¼ 4, and r0=r ¼ m0=m ¼ 1, with a
common coefficient of restitution a ¼ a0 ¼ 0:2 (a), 0.5 (b), and 0.8 (c). The two lin-
ear diffusive regimes for case (a) are shown in dotted orange lines, extrapolated
beyond the diffusive regime to clearly show the different slopes.
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accounted for in the Enskog kinetic theory description. These include
velocity correlations between the particles which are about to collide
(breakdown of the molecular chaos hypothesis) and the spatial inho-
mogeneities described in Sec. VIA. The effect of both on diffusion
increases with the contrast parameter k, inelasticities, and density.

Case II considers impurities of different mass and radius compared
to the particles of the granular gas, but still having the same mass density
(i.e.,m0=r20 ¼ m=r2). In Fig. 6, we present the diffusion coefficientD�

0ðaÞ
as a function of the diameter ratio r0=r for k¼ 2, a (common) coefficient
of restitution a ¼ a0 ¼ 0:8, and a (reduced) density nr2 ¼ 0:1. It is quite
apparent that the agreement between theory and both MD and DSMC
simulations is excellent, with deviations appearing when the size ratio is
large. As before, although not shown here, the agreement deteriorates with
large contrast (k 	 4) and high density where, as mentioned, the approxi-
mations made by the theory become to be less valid.

Finally, in case III we study the density effects in more detail,
which is done only using MD simulations as the DSMC method is not
appropriate for this purpose. Specifically, Fig. 7 presents the normal-
ized diffusion coefficient D�

0ðaÞ=D�
0ð1Þ as a function of the bath den-

sity nr2 for fixed coefficient of restitution and energy injection,
considering that particles are mechanically equivalent. In this situation,
the theory predicts that there should be no density dependency on the
scaled coefficient D�

0ðaÞ=D�
0ð1Þ, while the MD results show that when

increasing density there is an effect that can be as large as 20%. Note
that the case under consideration in the figure is rather extreme, with
low restitution coefficients (very high inelasticity) and large value of
the contrast in D. Moderate cases do not present such strong deviation
with density (not shown). These results are consistent with the hypoth-
esis that the anomalous behavior of the MSD is due to correlations not
included in the Enskog kinetic theory. These correlations play a rele-
vant role in tracer diffusion at high densities and when the contrast
between the tracer and the granular gas particles is large.

VII. THERMAL DIFFUSION SEGREGATION

One of the most usual phenomenon appearing in multicompo-
nent systems is the thermal diffusion segregation. It occurs in a

non-convective steady state (U ¼ 0) due to the existence of a tempera-
ture gradient, which causes the movement of the different species of
the mixture. In this situation, there is a balance between remixing of
species caused by diffusion and segregation caused by temperature dif-
ferences. The degree of segregation along the temperature gradient can
be quantified by means of the so-called thermal diffusion factor K. In a
steady state without convection (U ¼ 0) and where the mass flux is
zero (j0 ¼ 0), the thermal diffusion factor is defined as

�K
@ lnT
@y

¼ @

@y
ln

n0
n

� �
: (80)

Equation (80) has been simplified by assuming that in the case of
two-dimensional systems, gradients occur only along the y-axis. In
addition, we also assume that the gravitational field is parallel to the
thermal gradient, namely g ¼ �gbey , where bey is the unit vector in the
positive direction of the y-axis.

Let us consider a scenario in which the tracer particles have a
larger size than the granular gas particles (r0 > r). Furthermore, as
said before, since gravity and the thermal gradient align, then the lower
plate is hotter than the upper plate (@y lnT < 0). Based on Eq. (80),
when K > 0, impurities (or intruders) rise relative to granular gas par-
ticles (@z ln ðn0=nÞ > 0), leading to an accumulation of tracer particles
near the cooler plate, known as the Brazil nut effect (BNE).
Conversely, for K < 0, impurities descend compared to granular gas
particles (@z ln ðn0=nÞ < 0), resulting in an accumulation near the hot-
ter plate, giving rise to the reverse Brazil nut effect (RBNE). An illustra-
tive example of the segregation process for a two-dimensional system
is shown in Fig. 8. It is important to note that, although our study aims
to capture the phenomenology of confined systems, we are modeling
an unconfined two-dimensional system where collisions are described
by the D-model.

Let us determine the thermal diffusion factor. In the steady state,

assuming that jð1Þ0;y ¼ 0 and U ¼ 0, the momentum balance equation
(15) reduces to @yp ¼ �qg. In dimensionless form, this relationship
can be expressed as

p� þ p� þ /
@p�

@/

� �
@y ln n

@y lnT
¼ � g� � 1

2
D� @p

�

@D�

� �
; (81)

where g� ¼ qg=n@yT < 0 is a dimensionless parameter measuring the
gravity relative to the thermal gradient and 1

2D
�@D�p� ¼ ffiffiffiffiffiffiffiffi

p=2
p

v/D�

FIG. 7. Comparison with MD simulations: case III. Normalized diffusion coefficient
D�
0ðaÞ=D�

0ð1Þ as a function of the (reduced) density nr2 of the granular gas, for a
tracer particle of equal mass and diameter of the particles of the granular gas. The
(common) coefficient of restitution is a ¼ a0 ¼ 0:4 and k � D0=D ¼ 4. Theory in
a solid line and MD results with open circles.

FIG. 8. Illustration of the segregation process behavior: small circles represent
granular particles, and large circles represent impurities. The BNE (K > 0) effect
occurs when the impurity rises to the top, while the RBNE (K < 0) effect occurs
when the impurity sinks to the bottom of the system.
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for d¼ 2. According to Eq. (1), the condition jð1Þ0;y ¼ 0 leads to the
relation

�D�
0@y ln n0 ¼ D�@y ln nþ D�

T@y lnT: (82)

From Eqs. (81) and (82), the thermal diffusion factor K can be
expressed in terms of the dimensionless diffusion coefficients D�

0; D
�,

and D�
T as

K ¼ @y ln n

@y lnT
� @y ln n0

@y lnT

¼
nD�

T � D�
0 þ D�ð Þ g� þ p� � 1

2
D� @p

�

@D�

� �
nD�

0
; (83)

where n ¼ p� þ /@/p�. It is quite apparent from Eq. (83) that the
effect of different parameters of the system (impurity plus granular
gas) on the signature of K is not simple at all. On the other hand, since
Eq. (75) clearly shows that D�

0 > 0, then the curves delineating the
regimes between the segregation toward the cold and the hot wall
(BNE/RBNE transition) are determined from the condition

nD�
T ¼ D�

0 þ D�� �
g� þ p� � 1

2
D� @p

�

@D�

� �
: (84)

To disentangle the different competing mechanisms appearing in the
constraint (84) it is convenient to consider first some limiting situa-
tions where a more simple criterion can be derived.

A. Mechanically equivalent particles

In this limiting case, D�
T ¼ 0; D� ¼ �D�

0 and hence, Eq. (84)
applies for any value of the coefficients of restitution, masses, diame-
ters, solid volume fraction, and D parameters. In this case, as expected,
no segregation appears in the system.

B. Low-density regime

Let us assume now a dilute granular gas (nr2 ! 0) in the absence
of gravity (jg�j ¼ 0). In this limiting case, p� ¼ n ¼ 1 and the (dimen-
sionless) diffusion transport coefficients can be easily identified from
Eqs. (69)–(71). According to these expressions, Eq. (84) yields the
criterion

~D
� @c0
@~D

� �
�
D þ c0 � lð ÞD� @f

�

@D� ¼ 0: (85)

Equation (85) is still a quite complex relation in comparison with the
one derived in the absence of gravity in the IHS model.27 In this latter
case, the segregation criterion is simply given by c0 ¼ l.

When the inhomogeneities in both the density and temperature
can be neglected (@zT ! 0) but gravity is nonzero, then jg�j ! 1
(thermalized systems). This situation (gravity dominates over thermal
gradient) where segregation is essentially driven by gravity has been
widely studied in simulations and experiments.59–62 In this limiting
case, the segregation criterion in the low-density limit reads

c0 ¼ l: (86)

Equation (86) agrees with the results obtained in the IHS when the
granular gas is heated by means of a stochastic thermostat.53

C. Moderately dense regime

1. Absence of gravity (jg�jfi0)

Let us first consider a situation where gravity effects can be
neglected (jg�j ! 0). In this case, the condition K¼ 0 yields the
relation

nD�
T ¼ D�

0 þ D�� �
p� � 1

2
D� @p

�

@D�

� �
: (87)

Let us look at what this equation means in simpler terms. When there
is no gravity and the system is very dilute (meaning there are very few
particles), the main factors that affect whether particles will separate
(segregate) are the temperature gradient and the energy changes due to
collisions and external energy inputs. Specifically, whether particles
will rise or sink (BNE/RBNE transition) depends on the balance of
kinetic energy between the intruder and the granular gas. This balance
is influenced by the energy loss from inelastic collisions (characterized
by a and a0) and by the external energy inputs (characterized by D
and D0).

Therefore, if the energy loss due to inelasticity and the energy
input balance out for both species, no segregation will occur. However,
if we modify the mechanical properties of each species, the number of
collisions will vary. For example, if the impurity (or intruder) is larger
than the other particles (i.e., x � r0=r > 1), it will experience more
collisions because its collision frequency �0 is proportional to its diam-
eter r0. This leads to greater energy loss due to inelastic collisions, but
it will also receive more energy from the external energy input D0 [see
Eq. (6) when D ¼ D0].

To find a region where segregation occurs, we need to break the
symmetry between impurities and the particles of the granular gas. For
(dry) granular gases, this can be achieved by modifying the mechanical
properties of the mixture. For example, larger particles experience
more collisions, leading to greater energy loss. When the impurity is
larger, it undergoes more collisions, “cools down,” and moves to the
bottom wall (RBNE) since no extra velocity is added.26,35,63 In granular
suspensions, the thermostat discriminates the interaction with species
based on their mechanical properties, thus promoting segregation.55

In this work, we will break the symmetry by ensuring that the
larger species (the impurity or intruder), which experiences more colli-
sions, receives less energy input per collision. We will achieve this by
setting a common coefficient of restitution (a ¼ a0) and imposing
D0 < D. Therefore, for a fixed mass ratio l � m0=m and a sufficiently
large diameter ratio x, the intruder will lose energy and migrate to the
bottom wall (RBNE). This effect can be observed in Fig. 9, where we
illustrate a dilute two-dimensional system (nr2 ¼ 0) with a common
coefficient of restitution coefficient a ¼ 0:9, and D0 ¼ D=2. On the
other hand, if we keep the size ratio x the same and change the mass
ratio l, we see that as the intruder gets heavier, it moves from rising to
sinking (transition from BNE to RBNE). This result contrasts with
those found in Ref. 64 for dilute granular mixtures, although it is
important to note that the cited study considered arbitrary molar
fractions.

As we decrease the contrast of energy parameter k (D0 ¼ kD), we
intensify the symmetry breaking, apparently reinforcing the segrega-
tion criterion. However, the intruder loses so much energy that it is
unable to penetrate the sea of granular particles near the upper (cold)
plate, which move much faster, and eventually settles predominantly
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on the lower (hot) plate, resulting exclusively in RBNE (no segregation
criterion can be found).

Let us now analyze the effect of density [or equivalently, the solid
volume fraction / ¼ ðp=4Þnr2] on segregation. As density increases,
the frequency of collisions rises. For instance, if we maintain the same
parameters as depicted in Fig. 9 but increase the density (e.g., by setting
/ ¼ 0:1), locating a region where K cancels becomes more challeng-
ing. This phenomenon mirrors the difficulty observed in the dilute
case when k is too small. To expand the region where the BNE/RBNE
transition occurs as we increase x, we need to reduce the impact of
collisions and energy loss in the intruder. We do this by reducing a
while keeping a0 ¼ 0:9. This expansion is evident in Fig. 10, where we
have plotted two values of a: 0.6 and 0.9. However, the effect of density
now causes that the disparity in particle density between cold and hot
walls to become increasingly apparent. This means the intruder gets
more collisions in the cold region, which can counteract the effect of
extra collisions from the higher energy particles in the hot zone. As a
result, this can flip the RBNE and BNE regions, as shown in Fig. 10.
This marginal segregation curve qualitatively agrees with those
obtained for moderately dense granular and molecular gases, with and
without interstitial fluid,26,55 allowing for similar conclusions about the
effect of density on segregation.

2. Thermalized systems (›zTfi0)

We will now examine a scenario where the segregation dynamics
are primarily influenced by the gravitational force. In such cases,
jg�j ! 1, making the temperature gradient negligible (@yT ! 0) and
the condition K¼ 0 yields the relation

D�
0 þ D� ¼ 0: (88)

Obtaining thermalized systems is achievable in experimental setups
and numerical simulations that involve shaken or sheared sys-
tems.59,61,62,65 Figure 11 illustrates the segregation criterion for both a

granular gas (a ¼ a0 ¼ 0:8) and a molecular one (a ¼ a0 ¼ 1). In
this latter case, D ¼ D0 ¼ 0 so that we recover the segregation results
for undriven granular mixtures.44 Three different values of the volume
fraction / are considered in Fig. 11: / ¼ 0; / ¼ 0:1, and / ¼ 0:2.
Similar to driven granular mixtures (see Figs. 4 and 6 of Ref. 66 and
Figs. 13 and 14 of Ref. 55), we observe a complete reversal of the
RBNE/BNE transition when gravity is introduced, contrasting the
phase diagrams shown in Fig. 10 for finite densities. Furthermore,
both the effects of inelasticity and the injection of energy introduced

FIG. 10. Plot of the marginal segregation curve (K¼ 0) for d¼ 2,
a0 ¼ 0:9; jg�j ! 0; / ¼ 0:1, and two values of a: 0.9 (a) and 0.6 (b). The points
below the curve correspond to K < 0 (RBNE), while the points above the curve
correspond to K > 0 (BNE). Here, D0 ¼ D=2.

FIG. 11. Plot of the marginal segregation curve (K¼ 0) for d¼ 2, a ¼ a0 ¼ 0:8
(solid lines) and 1 (dashed lines), jg�j ! 1, and three different values of the solid
volume fraction /: / ¼ 0 (a), / ¼ 0:1 (b), and / ¼ 0:2 (c). The points below the
curve correspond to K > 0 (BNE), while the points above the curve correspond to
K < 0 (RBNE). Here, D ¼ D0.

FIG. 9. Plot of the marginal segregation curve (K¼ 0) for a two-dimensional dilute
(nr2 ! 0) system with a (common) coefficient of restitution a ¼ a0 ¼ 0:9, and
jg�j ! 0. The points below the curve correspond to K > 0 (BNE), while the points
above the curve correspond to K < 0 (RBNE). Here, D0 ¼ D=2.
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by D and D0 are suppressed by gravity, mimicking the behavior
observed in granular suspensions and driven granular gases.55,66

To provide an explanation for the BNE/RBNE transition, we can
consider the interplay between particle mass and collision frequency.
When intruder particles are heavier, their mass makes it easier for
them to settle to the bottom of the container due to the effect of grav-
ity, favoring the RBNE effect. Conversely, when the size ratio x
increases, tracer particles experience a higher number of collisions.
These collisions induce a “buoyancy-like” effect on the intruder, driven
by the pressure exerted by surrounding granular particles.
Consequently, the intruder is effectively lifted against gravity, leading
to the observation of the BNE effect. On the other hand, the effect of
density, characterized by the volume fraction /, is to increase the
buoyancy effect, thus expanding the BNE region.

3. General case

Finally, we examine the general case where the impact of the tem-
perature gradient is comparable to that of gravity. To exemplify this,
Fig. 12 displays the marginal segregation curve for a reduced gravity
jg�j ¼ 1 and for the same systems as plotted in Fig. 11.

The primary conclusion to be drawn is that, similar to dry granu-
lar mixtures and granular suspensions,35,55 the effect of gravity is sig-
nificantly more pronounced than that of the thermal gradient, as the
BNE/RBNE transition is maintained. Additionally, the influence of
inelasticity is also notably attenuated. Furthermore, in alignment with
thermalized cases, an increase in density enlarges the region where the
BNE effect is observed. Since ordinary temperature plays no role in the
motion of grains, at the core of statistical description we can establish
an equivalence between the density and the external driving in terms
of the kinetic energy provided to the particles. Therefore, an analogy
can be drawn between adjusting density and altering the shaking
strength in experimental setups.67,68 Specifically, decreasing the shak-
ing strength expands the BNE region. This phenomenon has already

been observed in freely evolving and driven granular mixtures, as well
as in granular suspensions.35,55

VIII. DISCUSSION

In this work, we have considered a kinetic theory approach to
determine the diffusion transport coefficients for a granular binary
mixture in the tracer limit. The injection of energy in the system is
accounted for by a collisional model, the so-called D-model.8 In partic-
ular, in each collision an amount of relative velocity D is added to the
velocities of the colliding particles. This energy injection acts as an
effective thermostat, allowing the system to reach a steady state.9,10

It should be noted that in a granular binary mixture (composed
of two types of particles differing in mass, diameter, inelasticity, or the
value of D at collisions), the steady state of the D-model is character-
ized by a temperature ratio T1=T2 different from 1 (breakdown of the
energy equipartition). Although the granular temperature T is the rele-
vant one at a hydrodynamic level, the effect of the energy nonequipar-
tititon on transport must be accounted for since its impact on
transport is generally significant, as has been clearly shown in previous
works for IHS (see, for instance, the review of Ref. 69).

In the tracer limit, since the state of the granular gas (excess com-
ponent) is not affected by the presence of tracer or impurity particles,
the momentum and heat fluxes of the system (impurities plus granular
gas) are the same as that for the granular gas. In this limiting case, the
mass flux of the impurities j0 is the relevant flux of the problem, and
therefore the goal of this paper has been to determine j0 in terms of
the parameter space of the system.

The theoretical framework of our study is based on the Enskog
kinetic equation, which extends the Boltzmann results for low-density
gases to higher densities. Under the tracer condition, the kinetic equa-
tion for the velocity distribution function f of the granular gas decou-
ples from the tracer velocity distribution function f0, and thus the
distribution f obeys the usual nonlinear Enskog equation. In addition,
since the collisions between the tracer particles themselves can be
neglected, the distribution f0 obeys a linear Enskog–Lorentz kinetic
equation.

In the Navier–Stokes domain, the constitutive equation for the
mass flux jð1Þ0 is given by Eq. (1), where the superscript 1 in j0 means
that the flux is computed to first order in the spatial gradients of n0, n,
and T. Equation (1) includes three transport coefficients: (a) the tracer
diffusion coefficient D0 associated with the gradient of tracer concen-
trationrn0; (b) the mutual diffusion coefficient D related to the diffu-
sion of impurities into the bulk particles, it is associated with the
density gradientrn; and (c) the thermal diffusion coefficient DT asso-
ciated with the temperature gradientrT . These three coefficients have
been obtained here in the so-called first Sonine approximation, with
results expressed in Eqs. (59)–(61). While the first Sonine approxima-
tion simplifies the solution of the coupled integral equations, higher
order terms in the Sonine expansion may be necessary to achieve
greater accuracy, especially in extreme conditions such as very strong
inelasticity and/or very disparate mass and diameter ratios.

To assess the validity of the analytical predictions, numerical sim-
ulations were performed for the tracer diffusion coefficient D0. Its
value is obtained by differentiating, with respect to time, the mean
square displacement of the tracer particles at long times, when the dif-
fusive limit is reached. Two simulation techniques have been
employed: the DSMC method31,56 and MD simulations using the
event-driven method.28–30 The DSMC method provides “exact”

FIG. 12. Plot of the marginal segregation curve (K¼ 0) for d¼ 2, a ¼ a0 ¼ 0:8
(solid lines) and 1 (dashed lines), jg�j ¼ 1, and three different values of the solid
volume fraction /: / ¼ 0 (a), / ¼ 0:1 (b), and / ¼ 0:2 (c). The points below the
curve correspond to K > 0 (BNE), while the points above the curve correspond to
K < 0 (RBNE). Here, D ¼ D0.
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solutions of the kinetic equation beyond the first Sonine polynomial
approximation. Thus, deviations of DSMC simulations from the
(approximate) analytical results could in principle be mitigated by con-
sidering higher-order Sonine corrections to the distribution functions f
and f0. MD simulations, however, do not rely on the assumptions of
the Enskog kinetic equation, such as the molecular chaos assumption,
the form of the pair correlation function or any other correlations
ignored in the theoretical description.

It is interesting to note that the MD simulations show an inter-
mediate regime between the short-time (ballistic) and the long-time
(diffusive) regimes (see Fig. 4); it deserves further study. This new
regime is particularly noticeable when the dynamic properties of the
impurity are very different from those of the bulk (granular gas par-
ticles), in particular, when the energy input to the tracer particles is
greater than that to the particles of the granular gas.

The results show that the agreement between the analytical and
numerical results is excellent for moderate densities and not very
strong inelasticities, as expected. However, as the dissipation and den-
sity increase, some discrepancies between simulations and theoretical
results appear. The discrepancy between theory and DSMC simula-
tions is rather small and has its origin in the first Sonine approxima-
tion considered in the theoretical development. MD simulations,
however, show larger deviations from the theoretical results, which
may be related to the breakdown of the molecular chaos hypothesis,
especially at high densities.

As an application of the derived expressions for the diffusion
transport coefficients, the thermal diffusion factor K [defined in Eq.
(80)] was obtained. The evaluation of K provides new insights into the
segregation phenomenon in dense granular mixtures in the presence
of gravity and/or a temperature gradient. The phase diagrams obtained
for the transition between the BNE and the RBNE70,71 provide a more
comprehensive understanding of how variations in system parameters
such as mass, size, and inelasticity control segregation. The results sug-
gest that segregation dynamics in confined granular systems differ sig-
nificantly from those in driven or freely cooling systems of
IHS,26,27,54,66 reiterating the fact that energy input can influence segre-
gation criteria. On the other hand, a similar behavior has been
observed in some situations with the phase diagrams of segregation
obtained for granular suspensions.55

The results derived here have been obtained in the context of a
very simple model where the coefficients of restitution a and a0 are
constant. However, several experiments and simulations have shown
that the coefficients of restitution depend on the relative velocity of the
colliding spheres.34 Some works72,73 devoted to these viscoelastic mod-
els have shown that the Navier–Stokes transport coefficients exhibit
qualitative differences from the ones obtained with the simplifying
assumption of a constant coefficient of restitution. In particular, if the
granular gas is kept at a constant temperature, the approximation of
an effective coefficient of restitution can be applicable.74 However, in
the case of the presence of a temperature gradient, the coefficients of
restitution will vary in different parts of the system, and hence the seg-
regation criterion will be different as the one obtained in Sec. VII.

Incorporating a velocity-dependent coefficient of restitution into
theoretical studies is very challenging due to the increased complexity
of the mathematical treatment required. Thus, it would be interesting
to extend the present results to the case of viscoelastic particles to see if
the behaviors found here for the diffusion transport coefficients are

also present (at least from a qualitative level) when the collisions are
described by an impact velocity dependent coefficients of restitution.

The D-model qualitatively describes the effective two-dimensional
dynamics of vibrofluidized three dimensional granular systems in shal-
low boxes, but it fails to describe the density instability that has been
observed in experiments and simulations.75 The origin of this difference
is the use of a constant value of D, which results in a pressure that grows
monotonically with density. Extensions of the model, where D increases
with time, adequately reproduce the instability.76 The associated kinetic
theory is more complex but similar approaches as those presented here
could be used to investigate diffusion in this case.

Despite the success of the current theoretical framework, future
work could focus on refining the analytical expressions for the diffu-
sion coefficients, perhaps by using alternative methods for solving the
Enskog–Lorentz equation or by exploring higher order terms in the
Sonine polynomial expansion. In addition, the interplay between con-
finement, inelasticity, and particle shape could be further investigated,
as these factors are likely to influence transport properties in granular
gases under more complex conditions.

In summary, the present study provides a comprehensive theoret-
ical treatment of mass transport in a dense granular gas within a con-
fined geometry, providing valuable predictions for tracer diffusion
coefficients. The results highlight the usefulness of the D model in
mimicking energy transfer between the horizontal and vertical degrees
of freedom, and the comparison with simulation data confirms the
validity of the theoretical approach. The work also extends previous
findings by introducing a segregation criterion that distinguishes
between BNE and RBNE under a thermal gradient and gravity, con-
tributing to a broader understanding of granular segregation in con-
fined systems.
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APPENDIX A: FIRST SONINE APPROXIMATION TO THE
DIFFUSION TRANSPORT COEFFICIENTS

In this appendix, we provide some technical details on the eval-
uation of the diffusion transport coefficients by considering the first
Sonine approximations (56)–(58). Let us evaluate each transport
coefficient separately.

1. Tracer diffusion coefficient D0

We consider first the tracer diffusion coefficient D0. In this
case, B0 is given by Eqs. (57) and (47) yields

d
m0q0
q

fð0ÞT@TD0 þ m2
0

qT0
D0

ð
dvm0V � Jð0Þ0 f0MV; f

ð0Þ
h i

¼ �dn0T
ð0Þ
0 ;

(A1)

where q0 ¼ m0n0 and use has been made of the resultð
dvm0V � B0 ¼ �dn0T

ð0Þ
0 : (A2)

Equation (A1) can be rewritten in terms of the dimensionless coeffi-
cient D�

0 ¼ ðm2
0�=qTÞD0 as

� 1
2
f�D�

0 1� ~D
� @ lnD�

0

@~D
�

� �
þ ��DD

�
0 ¼ c0; (A3)

where we recall that f� ¼ fð0Þ=�; c0 ¼ Tð0Þ
0 =T and

��D ¼ � 1

dn0T
ð0Þ
0 �

ð
dvm0V � Jð0Þ0 f0MV; f

ð0Þ
h i

: (A4)

Upon obtaining Eq. (A3), we have taken into account that

T@TD
�
0 ¼ � 1

2
~D
� @D�

0

@~D
� : (A5)

The expression of ��D was estimated in Ref. 21 when the zeroth-
order distribution f ð0ÞðVÞ of the granular gas is approximated by
the Maxwellian distribution (22) with the replacement v ! V. In
this approximation, one gets the result

��D ¼ 2p
d�1
2

dC
d
2

� � v0
�r
r

� �d�1

M
1þ h
h

� �1=2

ð1þ a0Þ þ
ffiffiffi
p

p
D�
0

" #
: (A6)

In the HSS, f� ¼ 0 and Eq. (A3) gives the expression (59) for D�
0.

2. Thermal diffusion coefficient DT

In a similar way as D0, the thermal diffusion coefficient DT can
be easily obtained from Eqs. (46) and (56) as

dqfð0ÞT@TDT þ 1
2
dqfð0Þ 1� D� @ ln f

�

@D�

� �
DT � dq���DDT

¼
ð
dvm0V � A0: (A7)

According to the expression (49) of A0, the right hand side of Eq.
(A7) can be computed as

ð
dvm0V � A0 ¼ �dn0T c0 �

1
2
~D
� @c0
@~D

�

� �
þ d

q0
q
p 1� 1

2
D� @ ln p

�

@D�

� �
�
ð
dvm0V �K0 T

@f ð0Þ

@T

� �
; (A8)

where

D� @p
�

@D� ¼
2dffiffiffiffiffi
2p

p v/D�: (A9)

Equation (A7) can be rewritten in terms of the dimensionless coeffi-
cient D�

T ¼ ðq�=n0TÞDT as
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The collision integral involving the operator K0 has been evaluated
in Appendix B with the result

1
dn0T

ð
dvm0V �K0 T

@f ð0Þ
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� �

¼ 2d
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� �d
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2
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0ffiffiffi
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: (A11)

In the HSS (f� ¼ 0), the differential equation (A10) becomes an
algebraic equation whose solution gives Eq. (60) for D�

T .

3. Diffusion coefficient D

In the case of the diffusion coefficient D, C0 is given by Eq.
(58). As for D� and D�

T , the equation for the dimensionless diffusion
coefficient D�

0 can be derived from Eq. (63) (with C ¼ 0) by multi-
plying both sides of this equation by m0V and integrating on veloc-
ity. The result is

1
2
f�D� 1� ~D

� @ lnD�

@~D
�

� �
� ��DD

�

¼ 1
dn0T

ð
dvm0V � C0 � f� 1þ /

@ ln v
@/

� �
D�

T ; (A12)

where D� ¼ ðm0�=n0TÞD. The first term on the right-hand side of
Eq. (A12) is given by

1
dn0T

ð
dvm0V � C0 ¼ �/

c0
@/

þ l p� þ /
@p�

@/

� �
� ð1þ xÞ�d
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@l0
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� �
T;n0

1
dn0T

�
ð
dvm0V �K0 f ð0Þ

h i
: (A13)
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In Eq. (A13), we recall that l ¼ m0=m and x ¼ r0=r. The colli-
sional integral appearing in the last term on the right hand side of
Eq. (A13) has been also computed in Appendix B with the result

1
dn0T

ð
dvm0V �K0 f ð0Þ

h i
¼ 2d

�r
r

� �d

/v0M0
1þ h
h

� �
1þ a0

2
þ 2D�

0ffiffiffi
p

p h
1þ h

� �1=2
" #

:

(A14)

The expression (61) for D� in the HSS can be easily obtained when
one takes f� ¼ 0 in Eq. (A12) and takes into account Eqs. (A13)
and (A14).

4. Derivatives with respect to D� and ~D
�

It is readily apparent that the diffusion transport coefficients
are given in terms of some derivatives. Let us evaluate these deriva-
tives in the HSS. We start with the derivative @c0=@/ in the steady
state (f� ¼ f�0 ¼ 0). It can be obtained from the time-dependent
equation for the temperature ratio c0

f�~D
� @c0
@~D

� ¼ 2c0 f� � f�0
� �

: (A15)

In the steady state, Eq. (A15) is trivially satisfied. To determine the
derivative @c0=@/ at the steady state, we take first the derivative
with respect to / in both sides of Eq. (A15) and then takes the
steady state limit. Thus, one gets the identity

@~f0
@/

¼ @~f0
@c0

@c0
@/

¼ 0; (A16)

where ~f0 ¼ f�0=v0. Upon obtaining Eq. (A16) use has been made of
the fact that in the steady state @f�=@/ ¼ f�ð@ ln v=@/Þ ¼ 0 and
~f0 ¼ 0. Since in Eq. (A16), @~f0=@c0 is in general different from zero
in the steady state, then one concludes that @c0=@/ ¼ 0 in the
steady state for the D-model.

In addition, the derivative @c0=@~D can be also be obtained
from Eq. (A15). It is given by
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where
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APPENDIX B: EVALUATION OF THE COLLISION
INTEGRALS

In this appendix, we compute the collision integrals appearing
in the evaluation of the transport coefficients DT and D. Let us start
with the collision integral

IDT �
ð
dvm0V �K0 T

@f ð0Þ

@T

� �
: (B1)

This integral can be computed by using the propertyð
dv1 wðV1ÞK0;i XðV2Þ½ �
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where we recall that V0
1 is defined by

V0
1 ¼ V1 �M 1þ a0ð Þðbr � g12Þbr � 2MD0br: (B3)

Using the property (B2), the integral IDT reads
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In the hydrodynamic regime, the zeroth-order distribution function
f ð0ÞðVÞ of the granular gas has the scaled form

f ð0ÞðVÞ ¼ nv�d
0 uðc;D�Þ; (B5)

where c ¼ V=v0 and the unknown scaled distribution u depends on
T through c and D�. According to Eq. (B5), f ð0ÞðVÞ has the property

T
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However, if one takes the Maxwellian approximation (22) for
f ð0ÞðVÞ, then u ’ p�d=2e�c2 , and so
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For the sake of simplicity, the approximation (B7) is employed here
to evaluate IDT . In this case,
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The integral IDT can be split in two parts; one of them was already
computed42 when D0 ¼ 0. Thus, the integral IDT can be written as

IDT ¼ Ið0ÞDT
þ Ið1ÞDT

; (B10)

where42
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Integrating by parts, Eq. (B11) can be written as
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To evaluate the integral (B13), we approximate f ð0Þ0 ðV1Þ and
f ð0ÞðV2Þ by their Maxwellian forms
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Using these Maxwellian distributions, Eq. (B13) can be expressed as
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where the (dimensionless) integral Ið1Þ�DT
is
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Here, g�12 ¼ g12=v0; c1 ¼ V1=v0; c2 ¼ V2=v0, and h ¼ m0T=mTð0Þ
0 .

The integral (B16) can be performed by the change of variables
x ¼ c1 � c2 and y ¼ hc1 þ c2, with the Jacobian ð1þ hÞ�d . The
result is
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With this result, the final expression of Ið1ÞDT
is
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where Eq. (20) has been employed. According to Eqs. (B11) and
(B18), the expression of IDT can be finally written as
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We consider now the collisional integral
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: (B20)

By employing the property (B2), one easily gets
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As in the case of the integral IDT , ID can be split in two parts; one of
them has been already computed when D0 ¼ 0. Thus,

ID ¼ Ið0ÞD þ Ið1ÞD ; (B22)

where42
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The integral Ið1ÞD can be also evaluated by replacing f ð0Þ0 ðV1Þ and
f ð0ÞðV2Þ by their Maxwellian approximations (B14). The result is

Ið1ÞD ¼ 2dþ1dffiffiffi
p

p �r
r

� �d

/v0M0D
�
0

1þ h
h

� �1=2

n0T: (B25)

With this result, the expression of ID can be written as
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