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Abstract
The Laplace transform is a valuable tool in physics, particularly in solving
differential equations with initial or boundary conditions. A 2014 study by
Tsaur and Wang (2014 Eur. J. Phys. 35 015006) introduced a Laplace-
transform-based method to solve the stationary Schrödinger equation for
various potentials. However, their approach contains critical methodological
flaws: the authors disregard essential boundary conditions and apply the
residue theorem incorrectly in the inverse transformation process. These errors
ultimately cancel out, leading to correct results despite a flawed derivation. In
this paper, we revisit the use of the Laplace transform for the one-dimensional
Schrödinger equation, clarifying correct practices in handling boundary con-
ditions and singularities. This analysis offers a sound and consistent frame-
work for the application of Laplace transforms in stationary quantum
mechanics, underscoring their educational utility in quantum mechanics
coursework.

Keywords: Schrödinger equation, Laplace transform, quantum oscillators

1. Introduction

The Schrödinger equation is a fundamental cornerstone of non-relativistic quantum
mechanics, governing the quantum behavior of systems at the microscopic scale. The
eigenfunctions of the Hamiltonian operator, which represent physical solutions to the sta-
tionary Schrödinger equation, are central to understanding quantum phenomena. Its one-
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dimensional form holds particular significance, serving as a crucial tool in both academic
research and practical applications.

Laplace transforms are crucial in physics as they provide a powerful tool for solving
differential equations that describe a wide variety of physical systems. When applied to the
stationary Schrödinger equation, this technique can streamline the solution process and
uncover key properties of quantum systems that may be difficult to discern using conven-
tional methods.

About a decade ago, Tsaur and Wang (TW) employed the Laplace-transform method to
derive exact solutions to the stationary one-dimensional Schrödinger equation for various
potential functions U(x) [1]. The primary objective of this paper is to expose critical errors in
TW’s methodology, including the omission of essential boundary conditions and the incorrect
application of the residue theorem.

2. Some properties of the Laplace transform

Given an exponentially bounded function f (x) defined in the domain x > 0, its Laplace
transform is defined as ( ) [ ( )] ( )ò= =

¥ -F s f x x f xd e sx
0

 , where s is a complex variable
[2]. This integral converges if f (x) grows no faster than an exponential function as x → ∞.

Among several key properties of the Laplace transform, three are particularly relevant
here. First, for derivatives of f (x):

[ ( )] ( ) ( ) [ ( )] ( ) ( ) ( ) ( )¢ = -  = - - ¢f x sF s f f x s F s sf f0 , 0 0 . 12 

Next, the inverse Laplace transform is (Mellin’s inverse formula)

( ) [ ( )] ( ) ( ) ( ) ( )òp
= = =

g
g g

g

g
-

¥ -

+
f x F s f x f x s F slim ,

1

2 i
d e , 2

a

a
sx1

i

i


where a is chosen to be greater than the real part of all singularities of F(s). If the product
esxF(s) decays sufficiently fast on a left semicircle supported by the vertical line s= a
(Bromwich contour), the residue theorem can be applied to evaluate the inverse Laplace
transform. This gives

( ) [ ( )] ( )å=f x F sRes e , 3
j

sx
sj

where {sj} are the poles of esxF(s).
As the third property, if the function f (x) has finite moments, defined as

( )ò=
¥

M x x f xdp
p

0
, then these moments are directly connected to the series expansion of

F(s) in powers of s:

( ) ( )
!

( )å= -
=

¥

F s M
s

p
1 . 4

p

p
p

p

0

This expression illustrates how the coefficients in the power series of F(s) correspond to the
moments Mp of the original function f (x).
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3. Application to the stationary one-dimensional Schrödinger equation

The stationary one-dimensional Schrödinger equation for a certain potential U(x) reads

( ) ( ) ( ) ( ) ( )y y y-  + =
m

x U x x E x
2

, 5
2

where ÿ is Planck’s constant, m is the particle’s mass, E represents the energy level, and ψ(x)
denotes the wavefunction, which is generally a complex-valued function. When applied to
equation (5), the main steps of the Laplace-transform method are:

(i) Introduce scaled variables x → ξ, ψ(x) → v(ξ).
(ii) Derive the second-order differential equation for v(ξ) from equation (5).
(iii) Apply the Laplace transform to obtain a differential equation for ( ) [ ( )]x=V s v .
(iv) Solve for the physical solution V(s), obtaining a quantization condition along the process.
(v) Invert the Laplace transform to recover ( ) [ ( )]x = -v V s1 .
(vi) Return to the original wavefunction v(ξ) → ψ(x).

Steps (i) and (ii) align with conventional [3] and Fourier-transform [4–6] solution methods,
whereas steps (iii)–(vi) are unique to the Laplace-transform approach. Note that the
application of the Laplace transform to v(ξ) requires knowledge of this function only for ξ� 0
to fully determine ψ(x). This reduction of the domain is possible under two key
circumstances: either the potential U(x) is symmetric, ensuring that its bound-state
wavefunctions possess well-defined parity (even or odd), or the entire domain of the spatial
variable x is naturally mapped into the region ξ� 0.

Table 1 lists three representative potentials, along with the corresponding variable trans-
formations (x, ψ) → (ξ, v) of step (i) and the dimensionless parameter (n or μ) characterizing
the energy level. The resulting second-order differential equations for v(ξ), step (ii), are shown
in the second column of table 2. The other quantum problems discussed in [1] reduce, after a
suitable change of variables, to either one of the equations in table 1 or to the Bessel equation.

Following step (iii), the differential equations for V(s) corresponding to the three proto-
typical oscillators are presented in the third column of table 2. Note that, while ξ is positive-
definite and only v0 enters the differential equation for V(s) in the Morse oscillator case, the
harmonic and modified Pöschl–Teller oscillators involve both v0 and ¢v0 due to the symmetric
nature of their potentials.

As an illustration of steps (iv)–(vi), let us consider the harmonic oscillator. The physical
solution v(ξ) must be regular at ξ = 0, allowing it to be expressed as a power series:

Table 1. Expressions for the potential U(x), the dimensionless energy parameter, and
the scaled variables ξ and v(ξ) for three prototypical oscillators. In the cases of the
Morse and the modified Pöschl–Teller oscillators, the strengths of the potentials are
characterized by the dimensionless parameters /a=c mA2  and

( )/a= + -mAℓ 1 8 11
2

2 2 , respectively.

Oscillator U(x) Energy parameter ξ v(ξ)

Harmonic wm x1
2

2 2 = -
w

n E 1
2

w xm


( )/ yx xe 22

Morse ( )-a a- -A e 2ex x2 = - -
a
-n c mE1

2
2


2ce−αx ( )x y- + xn c 1
2

Modified Pöschl–Teller −Asech2(αx) m =
a
- mE2


tanh(αx) ( ) ( )/x y- m- x1 2 2
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Table 2. Differential equations for v(ξ) and V(s), along with the quantization conditions, for the oscillators in table 1. In the third column, v0 ≡ v(0)
and ( )¢ º ¢v v 00 .

Oscillator Equation for v(ξ) equation for V(s) Quantization condition

Harmonic x - ¢ + =v v nv2 2 0 ( )¢ + + + - - ¢ =sV s n V v s v2 2 2 02
0 0 n = 0, 1, 2, K

Morse ( )( )x  + - ¢ + - =xv c n v c v2 0
4 ( ) [ ( ) ] [ ( ) ]- ¢ + + - - - - - =s V c c n s V c n v2 1 2 1 01

4
2

0 ( )= ¼ < -n n c0, 1, 2, 1

2

Modified
Pöschl–
Teller

( ) ( ) [ ( ) ( )]x m x m m-  - + ¢ + + - + =v v v1 2 1 ℓ ℓ 1 1 02 ( ) [( )( ) ]m m m-  + - ¢ + + + - + - - ¢ =s V sV s V v s v2 1 ℓ ℓ 1 02 2
0 0 ℓ − μ = 0, 1, 2K
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( )x x x= + ¢ + å =
¥v v v vk k

k
0 0 2 . Consequently, the Laplace transform V(s) takes the form

( ) ( )= å =
¥ - +V s V sk k

k
0

1 , where V0 = v0, = ¢V v1 0, and Vk = vkk! for k� 2. Substituting this
expansion of V(s) into its corresponding first-order differential equation yields the recurrence
relation

( ) ( )= - -+V n k V k2 , 0. 6k k2 

For a generic value of the energy parameter n, the recurrence relation leads to the asymptotic
behaviors Vk+2/Vk ∼ 2k and vk+2/vk ∼ 2/k for large k. Consequently, the series expansion

( ) ( )= å =
¥ - +V s V sk k

k
0

1 diverges, indicating that V(s) has an essential singularity at infinity.
Furthermore, the solution v(ξ) exhibits asymptotic growth of the form ( )x ~ xv e

2
for large ξ.

This behavior translates into the asymptotic form ( ) /y ~ xx e 22
, which is unphysical for

bound-state wavefunctions.
On the other hand, this singular behavior is avoided if n is a nonnegative integer and either

¢v0 vanishes (for n even) or v0 equals zero (for n odd). In either case, V(s) has a polynomial
form:

( ) ( )
!

( )
⌊ ⌋

( )
/

åµ
-

=

- - -V s
k

s
1

2
, 7

k

n k

k
n k

0

2

2
2 1

where ⌊n/2⌋ denotes the floor function of n/2. This concludes step (iv). Applying the inverse
Laplace transform to V(s) directly gives v(ξ) ∝ Hn(ξ), where Hn(ξ) represents the Hermite
polynomials. Consequently, the physical wavefunctions are ( ) ( )/y xµ x-x He n

22
, with the

proportionality constant determined by the normalization condition.
The Morse and Pöschl–Teller potentials are handled in an analogous manner. The fourth

column of table 2 lists the respective quantization conditions derived by imposing the
requirement for physical solutions. Those physical solutions v(ξ) and ( ) [ ( )]x=V s v for the
ground state and the first excited state are presented in table 3, where the normalization
constants are omitted for simplicity.

Table 3. Solutions for the ground state and first excited state corresponding to the
oscillators in table 1. The fifth column presents the expressions for the functions VTW(s)
as derived in [1], obtained under the assumption that = ¢ =v v 00 0 . Here, kℓ(s) is the
modified spherical Bessel function of the second kind [7, 8].

Oscillator
Quantum
number v(ξ) V(s) VTW(s)

Harmonic n = 0 1 s−1 /- -se s 4 12

n = 1 ξ s−2 /- -se s 4 22

Morse n = 0 e−ξ/2 ( )+
-

s 1
2

1 ( )
( )
-

´ +

-

-

s

s

c1
2

2 1

1
2

1

⎧

⎨
⎩

( )
=

>

n

c

1

if 3
2

⎧
⎨⎩

( )
/

x- -
´ x-

c2 2

e 2
⎧
⎨⎩

( )
( )

( )- +

- +

-

-

c s

s

2 2 1
2

1

1
2

2

⎧

⎨
⎩

( )
( )
-

´ +

-

-

s

s

c1
2

2 2

1
2

2

⎧

⎨
⎩

Modified
Pöschl–Teller

μ = ℓ 1 s−1 s ℓkℓ(s)

μ = ℓ − 1 ξ s−2 s ℓ−1kℓ(s)
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Let us illustrate the property in equation (4) with the first excited state of the Morse potential,
for which ( ) ( ) /x x= - - x-v c e2 2 2. Its moments are ( )ò x x x= =

¥
M vdp

p
0

!( )- -+ p c p2 2p 2 . Substituting into equation (4) gives

( ) ( )( )
( )

( )å= - - - =
-
+

+
+=

¥

V s c p s
c

s

s

s
4 2 2 4

2

1 2

2

1 2
, 8

p

p

0
2

⎡
⎣⎢

⎤
⎦⎥

where we have used the mathematical identities ( )/å = -=
¥ x x1 1p

p
0 and

( )/å = -=
¥ px x x1p

p
0

2. It is straightforward to verify that this expression for V(s) matches
the one provided in table 3.

For the harmonic and Pöschl–Teller oscillators, the functions v(ξ) are polynomials, leading
to divergent moments. Consequently, their Laplace transforms V(s) cannot be expressed as
series expansions in positive powers of s.

4. Critique of TW’s approach

Although TW’s paper [1] holds significant pedagogical value, there are two notable flaws in
their derivations, specifically in steps (iii) and (v) above.

In progressing to step (iii), TW applies equation (1) without accounting for the initial (or
boundary) values v0 and ¢v0. They justify this by writing [1] ‘For simplicity, in section 3 we
ignore all the initial conditions ( ) [ ]( )  = -f for k n0 0, 1, 2, , 1 ’k and ‘The initial
conditions can be ignored because all the Schrödinger equations considered in this paper are
linear and homogeneous.’ However, this argument is flawed. Ignoring the initial conditions v0
and ¢v0 is not merely a matter of convenience but of consistency; if the final result v(ξ)
contradicts the assumption = ¢ =v v 00 0 , then neglecting these conditions in step (iii) is
unjustified. Moreover, while the Schrödinger equation itself is indeed homogeneous, its
Laplace transform is generally inhomogeneous due to the presence of v0 and ¢v0. Among the
various cases examined in [1], the neglect of v0 is only justified in the specific case of the
radial equation for a two-dimensional free particle, where the Bessel equation arises.

The flaw in step (v) arises from using equation (3) when the conditions necessary for
transitioning from equation (2) to (3) are not met. For example, in the case of the harmonic
oscillator, TW assume that [ ] =- s 0k1 with k = 0, 1,K because s k does not have any poles.
However, equation (3) is not applicable when F(s) = s k with k� 0. In particular,

[ ] ( )d=- x11 . Interestingly, the two flaws ultimately cancel each other out, resulting in the
correct function v(ξ). In this context, it is important to note that while Chen’s approach for
solving the Morse potential [9] contains similar flaws, the methods employed by Pimentel and
de Castro for the harmonic potential [10], as well as Englefield’s seminal contributions to the
subject [11], do not exhibit these inconsistencies.

From table 3 we see that ( ) ( )¢ =v v, 1, 00 0 and (0, 1) for the ground and first excited states,
respectively, in the cases of the harmonic and modified Poschl–Teller oscillators. Moreover,
in the Morse oscillator, ( ) ( )¢ = -v v, 1,0 0

1

2
and (2c − 2, − c) for the ground and first excited

states, respectively. In each case, the function V(s) satisfies the inhomogeneous differential
equation listed in table 1, using the appropriate values of v0 and ¢v0. On the other hand, the
function VTW(s), as derived in [1] and included in table 3, adheres to the same differential
equation only under the restrictive condition = ¢ =v v 00 0 .

As a simple example, consider the ground state of the harmonic oscillator. How do TW
derive v(ξ) = 1 from ( ) /= - -V s se sTW 4 12

? They do so by expanding VTW(s) into a series:
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( )
( ) !

( )å= +
-

-

=

¥ -
V s s

s

k4
. 9

k

k

k
TW 1

1

2 1

They then claim, as previously noted, that [ ] =-s 0k2 1 for k� 1 invoking the residue
theorem, as indicated by equation (3). However, this assumption is fundamentally flawed. In
fact, we demonstrate in the subsequent analysis that the inverse Laplace transform

( ) [ ( )]x = -v V sTW 1 TW of ( ) /= - -V s se sTW 4 12 results in a function characterized by
extreme singularity.

According to equation (2), ( ) ( )x x=
g

g
¥

v vlimTW TW , where ( )x =gv
TW

( ) ( )òp
g

g-
-

+
s V s2 i d e

a

a sx1
i

i TW and a > 0. After the change of variable s = a + iy, ( )xgv
TW can be

rewritten as

( ) [ ( )] [ ( )] ( )( ) / //òx
p

x x
=

- + -
+g

x g
-v y

a y a y y a

a y

e
d e

cos 2 sin 2
. 10

a
y aTW

0

4
2 2

2 2

Since in the limit γ → ∞ the value of a becomes irrelevant, we can take the limit a → 0+,
yielding

( ) ( ) ( )/òx
p

x=g

g
-v y y y

1
d e sin . 11yTW

0

4 12

Numerical evaluation reveals that ( ) ( ) ( )/x g x gx»g
g

g
-v Ae sinTW 4 22

, where the envelope
function Aγ(ξ) exhibits two distinct regimes. For ξ ∼ γ−1, Aγ(ξ) approaches a constant value

gA 191

300
. This behavior is illustrated in figure 1(a), where the rescaled function

( ) ( )/g x gx~g
g

- ve sin2 4 TW2
is plotted against γξ/2π for three large γ values. As shown, there

is excellent mutual agreement, with the oscillation wavelength being approximately 1. For
ξ ∼ 1 and ξ ∼ γ, the envelope of the oscillations decreases with ξ/γ, as illustrated in
figure 1(b). In this regime, the plot of ∣ ( )∣/g xg

g
- ve2 4 TW2

versus ξ/γ closely follows the
envelope function, aside from high-frequency oscillations that superimpose on it.

Figure 1. (a) Plot of ( )/g xg
g

- ve2 4 TW2
versus γξ/2π for γ = 50 (dots), 100 (open circles),

and 200 (solid line). (b) Plot of ∣ ( )∣/g xg
g

- ve2 4 TW2
versus ξ/γ for γ = 50 (up to

ξ/γ = 2), 100 (up to ξ/γ = 1), and 200 (up to ξ/γ = 0.5).
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In summary, the function ( )xgv
TW oscillates very rapidly (with a wavelength of 2πγ−1) and

an enormous amplitude on the order of / gg -e 4 22
, which decays slowly over a scale of

approximately γ. All of this underscores the highly singular nature of ( ) ( )x x=
g

g
¥

v vlimTW TW

and the pathological character of the Laplace transform ( ) /= - -V s se sTW 4 12 derived under
the condition v0 = 0, in stark contrast to the true functions v(ξ) = 1 and V(s) = s−1.

An alternative way to characterize vTW(ξ) is through the moments =Mp

[ ( ) ]ò x x x -
¥

vd 1p
0

TW of the difference ( ) [ ( )]/x - = -- - -v s1 e 1sTW 1 1 42
 . From

equation (4) we have

( )( ) ! !
( )

( )

( )

/

/

=
=

=-
+

-

+

M
p

p

0 if even ,

if odd.
12p p

p

1

1 2

p

p

1 2

1 2

⎧
⎨
⎩

As observed, the even moments of the deviation vTW(ξ) − 1 vanish identically, reflecting
symmetry properties, while the odd moments alternate in sign and grow in magnitude at an
extremely rapid rate as the order increases. This behavior emphasizes the highly oscillatory
and divergent nature of the moments associated with vTW(ξ), reinforcing its departure from
regular physical functions.

5. Concluding remarks

In conclusion, while TW’s method yields correct final results for the quantum systems under
consideration, the inconsistencies in their application of the Laplace transform and its inverse
highlight critical shortcomings in their approach. Specifically, neglecting essential initial and
boundary conditions, as well as mismanaging singularities in the Laplace-domain repre-
sentations, undermines the mathematical rigor and reliability of their derivations. These issues
stress the importance of a more meticulous and systematic treatment of such conditions to
ensure the validity of results and to avoid potentially flawed or misleading conclusions in the
analysis of quantum systems.
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