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A segregation criterion based on the inelastic Enskog kinetic equation is derived to show the transition
between the Brazil-nut effect �BNE� and the reverse Brazil-nut effect �RBNE� by varying the different param-
eters of the system. In contrast to previous theoretical attempts, the approach is not limited to the near-elastic
case, takes into account the influence of both thermal gradients and gravity, and applies for moderate densities.
The form of the phase diagrams for the BNE-RBNE transition depends sensitively on the value of gravity
relative to the thermal gradient, so that it is possible to switch between both states for given values of the mass
and size ratios, the coefficients of restitution, and the solid volume fraction. In particular, the influence of
collisional dissipation on segregation becomes more important when the thermal gradient dominates over
gravity than in the opposite limit. The present analysis extends previous results derived in the dilute limit case
and is consistent with the findings of some recent experimental results.
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Segregation and mixing of dissimilar grains in agitated
granular binary mixtures is one of the most important prob-
lems in granular matter from both fundamental and practical
points of view. In some cases it is a desired and useful effect
to separate particles of different types, while in other pro-
cesses it is undesirable and can be difficult to control. Usu-
ally, the larger intruder particles tend to climb to the top of
the sample against gravity �Brazil-nut effect �BNE��, but un-
der certain conditions they can also accumulate at the bottom
�reverse Brazil-nut effect �RBNE��. However, although there
is extensive observational evidence of these phenomena,
much less is known about the physical mechanisms involved
in this problem �1�. Among the different competing mecha-
nisms proposed to explain the transition BNE⇔RBNE
�2–5�, thermal �Soret� diffusion becomes the most relevant
one at large shaking amplitude where the system resembles a
granular gas and kinetic theory becomes useful to study seg-
regation. Some previous theoretical attempts have been re-
ported in the literature analyzing thermal diffusion effects on
segregation in bidisperse granular systems. Nevertheless,
these early contributions have been restricted to elastic �6�
and quasielastic particles �7�, have considered thermalized
systems �and so the segregation dynamics of intruders is only
driven by the gravitational force� �6,7�, and/or have been
limited to dilute gases �8–10�. The main goal of this paper is
to propose a theory based on a recent solution of the inelastic
Enskog equation �11� that covers some of the aspects not
accounted for in previous works. The theory subsumes all
previous analyses �6–9�, which are recovered in the appro-
priate limits. Furthermore, the theoretical predictions are in
qualitative agreement with some molecular dynamics �MD�
simulation results �5,8,12� and are also consistent with pre-
vious experimental works �4,5�.

We consider a binary mixture of inelastic hard disks �d
=2� or spheres �d=3� where one of the components �of mass
m0 and diameter �0� is present in tracer concentration. In this
limit case, one can assume that �i� the state of the dense gas

�excess component of mass m and diameter ���0� is not
affected by the presence of tracer particles and �ii� one can
also neglect collisions among tracer particles in their kinetic
equation. This is formally equivalent to study an intruder in a
dense granular gas, and this will be the terminology used
here. Collisions among gas-gas and intruder-gas particles are
inelastic and are characterized by two independent �constant�
coefficients of normal restitution � and �0, respectively. The
system is in the presence of the gravitational field g=−gêz,
where g is a positive constant and êz is the unit vector in the
positive direction of the z axis. To fluidize the mixture and
reach a steady state, in most of the experiments energy is
injected into the system through vibrating horizontal walls.
Here, in order to avoid the use of vibrating boundary condi-
tions, particles are assumed to be heated by a stochastic-
driving force which mimics a thermal bath. Although previ-
ous experiments �14� have shown a less significant
dependence of the temperature ratio T0 /T on inelasticity than
the one obtained in driven steady states �13�, the results de-
rived in Ref. �9� for T0 /T from this stochastic driving method
compare quite well with MD simulations of agitated mix-
tures �5�. This agreement suggests that this driving method
can be seen as a plausible approximation for comparison
with experimental results. A sketch of the geometry of the
problem is given in Fig. 1.

The thermal �Soret� diffusion factor � is defined at the
steady state with zero flow velocity and gradients only along
the vertical direction �z axis�. Under these conditions, the
factor � is defined by �9�

− ��z ln T = �z ln�n0

n
� , �1�

where n0 and n are the number densities of the intruder and
fluid particles, respectively. Let us assume that gravity and
the thermal gradient point in parallel directions �i.e., the bot-
tom plate is hotter than the top plate, �z ln T�0� �see Fig. 1�.
Obviously, when ��0, the intruder rises with respect to the
fluid particles �BNE, i.e., �z ln�n0 /n��0�, while if ��0, the*vicenteg@unex.es
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intruder falls with respect to the fluid particles �RBNE, i.e.,
�z ln�n0 /n��0�.

In order to determine the dependence of the coefficient �
on the parameters of the system, we focus our attention on an
inhomogeneous steady state with gradients along the z direc-
tion. Since the flow velocity vanishes, the mass flux of the
intruder jz=0. In addition, the momentum balance equation
yields

�p

�z
=

�p

�T
�zT +

�p

�n
�zn = − �g , �2�

where p is the pressure and �=mn is the mass density of the
fluid particles. Upon writing Eq. �2�, we have taken into
account that p depends on z through its dependence on n and
T �11�. To first order in the spatial gradients �Navier-Stokes
description�, the constitutive equation for the mass flux of
the intruder is �11�

jz = −
m0

2

�
D0�zn0 −

m0m

�
D�zn −

�

T
DT�zT , �3�

where D0, D, and DT are the relevant transport coefficients.
Expressions for the pressure p and the transport coefficients
D0, D, and DT have been recently obtained in the undriven
case by solving the Enskog kinetic equation by means of the
Chapman-Enskog method in the first Sonine approximation
�11�. The extension of these results to the driven case is
straightforward. The condition jz=0 along with the balance
equation �2� allows one to get the thermal diffusion factor �
in terms of the parameters of the mixture as

� =
	DT* − �p* + g*��D0

* + D*�

	D0
* . �4�

Here, 	� p*+
�
p*, g*=�g /n�zT�0 is a dimensionless
parameter measuring the gravity relative to the thermal gra-
dient, and p*= p /nT=1+2d−2�
�1+��. Moreover, ��
� is
the pair correlation function for the granular gas, 

= ��d/2 /2d−1d�d /2��n�d is the solid volume fraction, and
the reduced transport coefficients are explicitly given by

D0
* =

�

�D
, �5�

DT* = −
M

�D
�p* −

�

M
� +

�1 + ��d

2�D

M

1 + M
�0
�1 + �0� , �6�

D* = −
M

�D
	 +

1

2�D

� + M

1 + M




T
� ��0

�

�

T,n0

�1 + �0� . �7�

Here, ��T0 /T is the temperature ratio, M �m0 /m is the
mass ratio, ���0 /� is the size ratio, and

�D =
�2��d−1�/2

d�d

2
� �0� � + M

M�1 + M�
�1 + �0� . �8�

In addition, �0 is the intruder-gas pair correlation function
and �0 is the chemical potential of the intruder. When the
granular gas is driven by means of a stochastic thermostat,
the temperature ratio � is determined �9� from the require-
ment ��0=M�, where the expressions for the cooling rates �0
and � in the local equilibrium approximation can be found in
Ref. �11�.

The condition �=0 provides the segregation criterion
for the transition BNE⇔RBNE. Since 	 and D

0
* are both

positive, then according to �4�, sgn���=sgn�	DT*

− �p*+g*��D
0
*+D*��. Consequently, taking into account Eqs.

�5�–�7�, the segregation criterion can be written as

g*�� − M	� − �

�p*

�

+

�1 + ��d

2

M

1 + M
�0
�1 + �0�

� 	�p* + g*�
M + �

M
� − 	
 = 0, �9�

where ����1+��−d /T�0���
�0�T,n0
. Equation �9� gives the

phase diagram for the BNE-RBNE transition due to Soret
diffusion of an intruder in a moderately dense granular gas.
This is the most relevant result of this paper. The parameter
space of the problem is sixfold: the dimensionless gravity g*,
the mass ratio m0 /m, the ratio of diameters �0 /�, the solid
volume fraction 
, and the coefficients of restitution � and
�0. The influence of density on segregation is accounted for
by the second and third terms in Eq. �9�. As expected, when
m0=m, �0=�, and �=�0, the system �intruder plus gas� is
monodisperse and the two species do not segregate. This is
consistent with Eq. �9� since in this limit case DT*=D

0
*

+D*=0, and so the condition �9� holds for any value of �
and 
. In the dilute limit case �
→0�, 	= p*=1 so that Eq.
�9� reads

g*�� − M� = 0. �10�

Note that in the absence of gravity �g*=0�, Eq. �10� applies
for any value of the parameters of the system and so the
intruder does not segregate in a dilute gas. When g*�0, the
solution to �10� is �=M. This result agrees with the recent
segregation condition derived from the Boltzmann equation
�8,9�.

In general, segregation is driven and sustained by both
gravity and temperature gradients. The combined effect of
both parameters on Soret diffusion is through the reduced
parameter g*. This parameter measures the competition be-

FIG. 1. �Color online� Sketch of the problem studied here. The
small circles represent the particles of the granular fluid, while the
large circles are the intruders. The BNE �RBNE� effect corresponds
to the situation in which the intruder rises �falls� to the top �bottom�
plate.
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tween these two mechanisms on segregation. In previous the-
oretical studies on dense gases �6,7�, the temperature was
assumed to be uniform in the bulk of the system ��zT=0� so
that segregation of intruders was essentially driven by grav-
ity. This is quite an interesting limit since most of the experi-
ments �3,4,15� have been carried out under these conditions.
In this limit ��g*�→��, Eq. �9� becomes

1 +
�1 + ��d

2
�0
�1 + �0�

� + M

1 + M

�

�

1 + 2d−2�
�1 + ���1 + 
�
 ln�
���
T0

T
−

m0

m
= 0, �11�

while the segregation criterion found independently by Jen-
kins and Yoon �6� �for an elastic system� and by Trujillo et
al. �7� is

1 +
�1 + ��d

2
�0


1 + 2d−1�


T0

T
−

m0

m
= 0. �12�

Equation �11� reduces to Eq. �12� when one �i� neglects the
dependence on inelasticity and assumes equipartition in cer-
tain terms, �ii� takes the approximation �=1 �which only
applies for a dilute gas of mechanically equivalent particles�,
and �iii� neglects high-density corrections �last term in the
denominator of �11��. Thus, even in the particular limit �g*�
→�, the criterion �11� is much more general than the one
previously derived �7� since it covers the complete range of
the parameter space of the problem.

Henceforth and for the sake of concreteness, we assume a
three-dimensional system with �=�0. In this case �16�, �
= �1− 1

2
� / �1−
�3 and

�0 =
1

1 − 

+ 3

�

1 + �




�1 − 
�2 + 2
�2

�1 + ��2


2

�1 − 
�3 .

�13�

The expression for the chemical potential consistent with the
above approximations can be found in Ref. �17�. A phase
diagram delineating the regimes between BNE and RBNE is
shown in Fig. 2 for 
=0.1, g*=0, and two values of the
�common� coefficient of restitution �. We observe that, in the
absence of gravity, the main effect of dissipation is to reduce
the size of the BNE. It is also apparent that the RBNE is
dominant at both small mass ratio and/or large diameter ra-
tio. In addition, comparison with the results obtained for �
=0.8 assuming that T0=T shows that the nonequipartition of
granular energy has an important influence on segregation in
the absence of gravity. This is consistent with MD-based
findings of Galvin et al. �12�. Moreover, the results obtained
from Eq. �9� show that the form of the phase diagrams de-
pends significantly on the value of the reduced gravity �g*�
�namely, reverse buoyancy relative to the effect of Soret dif-
fusion�. Thus, in general for given values of m0 /m, �0 /�, �0,
�, and 
, a transition between both states BNE and RBNE is
possible by changing �g*�. To illustrate the influence of the
reduced gravity, a phase diagram is plotted in Fig. 3 when
�g*�=1 �gravity comparable to the thermal gradient� for dif-
ferent values of the volume fraction 
. In contrast to Fig. 2,
it is apparent that the RBNE regime appears essentially now

for both large mass ratio and/or small size ratio. With respect
to the dependence on density, Fig. 3 shows that in general the
role played by density is quite important since the regime of
the RBNE decreases significantly with increasing density.
Following Trujillo et al. �7�, since the effect of shaking
strength of vibration on the BNE-RBNE phase diagram can
be tied to the effect of varying the volume fraction 
, it is
apparent from Fig. 3 that the possibility of the RBNE will
increase with increasing shaking strength. This feature agrees
with the experimental findings of Breu et al. �4� since their
results show similar behavior with the external excitation.
The form of the phase diagram in the limit �g*�→� is shown
in Fig. 4 for 
=0.5 and two values of the coefficient of
restitution �=1 and 0.9. Our results indicate that, in contrast
to the case of Fig. 2, the main effect of inelasticity is to
reduce the size of the RBNE region, which qualitatively
agrees again with experiments �4�. On the other hand, our
predictions disagree with the theoretical results derived by
Trujillo et al. �7� since the latter found that the mass ratio is
a two-valued function of the size ratio and so the main effect
of dissipation is to introduce a threshold value of the size
ratio above which there is no RBNE. The results also indi-
cate �not shown in Fig. 4� that nonequipartition has a weaker
influence on segregation when �g*�→� than in the opposite

FIG. 2. �Color online� Phase diagram for the BNE-RBNE tran-
sition for 
=0.1 in the absence of gravity for two values of the
�common� coefficient of restitution �. Points above the curve cor-
respond to ��0 �BNE�, while points below the curve correspond
to ��0 �RBNE�. The dashed line is the result obtained for �
=0.8 assuming energy equipartition �T0=T�.

FIG. 3. �Color online� Phase diagram for the BNE-RBNE tran-
sition for �=0.8, �g* � =1, and three different values of the solid
volume fraction 
.
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limit ��g*�=0�. This behavior qualitatively agrees with the
experiments carried out by Schröter et al. �5� for vibrated
mixtures since they find energy nonequipartition to have no
discernible influence on their results.

In summary, a kinetic theory based on a solution of the
inelastic Enskog equation has been used to analyze thermal
�Soret� diffusion effects on segregation for an intruder in a
driven moderately dense granular gas under gravity. The
present study goes beyond the weak dissipation limit, takes
into account the influence of both thermal gradient and grav-

ity on thermal diffusion, and applies for moderate densities.
Although the theory is consistent with previous numerical
and experimental results, a more quantitative comparison
with the latter would be desirable. As a first test, kinetic
theory predictions in the Boltzmann limit �9� compare well
with MD simulations of agitated dilute mixtures �8�. Given
that the results derived here extend the description made in
Ref. �9� to moderate densities, it can be reasonably expected
that such a good agreement is also kept at finite densities. In
this context, it is hoped that this paper stimulates the perfor-
mance of such simulations. On the other hand, it must be
stressed that the present work only deals with the tracer or
intruder limit. This precludes the possibility of comparing
our theory with the results reported by Schröter et al. �5� in
agitated mixtures constituted by particles of the same density
and equal total volumes of large and small particles. When
convection is practically suppressed, they studied the influ-
ence of dissipation on Soret diffusion. I plan to extend the
present theory to finite concentration to carry out a compari-
son with the above computer simulation results �5� in the
near future.
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FIG. 4. �Color online� Phase diagram for the BNE-RBNE tran-
sition for 
=0.5 in the absence of a thermal gradient ��g*�→�� for
two values of �. The dashed and dash-dotted lines refer to the
results obtained by Jenkins and Yoon �6� and Trujillo et al. �7�,
respectively.
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