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Abstract

We derive an explicit analytic expression for the first quantum correction to the second
virial coefficient of a d-dimensional fluid whose particles interact via the generalized
Lennard-Jones (2n, n) potential. By introducing an appropriate change of variable, the
correction term is reduced to a single integral that can be evaluated in closed form in terms
of parabolic cylinder or generalized Hermite functions. The resulting expression compactly
incorporates both dimensionality and stiffness, providing direct access to the low- and
high-temperature asymptotic regimes. In the special case of the standard Lennard-Jones
fluid (d = 3, n = 6), the formula obtained is considerably more compact than previously
reported representations based on hypergeometric functions. The knowledge of this
correction allows us to determine the first quantum contribution to the Boyle temperature,
whose dependence on dimensionality and stiffness is explicitly analyzed, and enables
quantitative assessment of quantum effects in noble gases such as helium, neon, and argon.
Moreover, the same methodology can be systematically extended to obtain higher-order
quantum corrections.

Keywords: second virial coefficient; quantum corrections; generalized Lennard-Jones
potential; semiclassical fluids; parabolic cylinder functions

1. Introduction
In a semiclassical fluid, the second virial coefficient can be expressed as follows [1–8]:

B2(T) = B(0)(T) +
h̄2

m
B(1)(T) +O

(
h̄4

m2

)
, (1)

where

B(0)(T) =
Ωd
2

∫ ∞

0
dr rd−1

[
1 − e−βϕ(r)

]
, Ωd =

2π
d
2

Γ( d
2 )

, (2)

is the classical contribution, and

B(1)(T) =
Ωdβ3

24

∫ ∞

0
dr rd−1e−βϕ(r)

[
dϕ(r)

dr

]2

(3)

represents the first quantum correction. In Equations (2) and (3), ϕ(r) denotes the pair
potential, β ≡ (kBT)−1, and Ωd is the total solid angle in d dimensions.
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The prototypical pair potential in liquid-state theory is the Lennard-Jones (LJ) potential,
written as follows:

ϕ(r) = 4ϵ

[(σ

r

)2n
−
(σ

r

)n
]

, (4)

where ϵ and σ set the energy and length scales, respectively. The standard LJ (sLJ) fluid
corresponds to d = 3 and n = 6, while the generalized Lennard-Jones (gLJ) model allows
arbitrary dimensionality d and stiffness parameter n > d. In the limit n → ∞, the gLJ
potential of Equation (4) approaches the hard-sphere potential.

By introducing the reduced (dimensionless) coefficients, written as follows:

Bc ≡
2d

Ωdσd B(0), Bq ≡ 24ϵ

Ωdσd−2 B(1), (5)

we obtain
Bc(T∗) = d

∫ ∞

0
dx xd−1

[
1 − e−4β∗(x−2n−x−n)

]
, (6a)

Bq(T∗) = 16n2β∗3
∫ ∞

0
dx x−(2n+3−d)e−4β∗(x−2n−x−n)

(
1 − 4x−n + 4x−2n

)
, (6b)

where T∗ ≡ 1/β∗ = kBT/ϵ is the reduced temperature.
Several equivalent representations of Bc for the sLJ fluid can be found in the literature

(see, for instance, Ref. [8] and references therein). Perhaps the most compact expression—
valid for the gLJ fluid—is Section 3.7 in [9]:

Bc(T∗) = Γ(1 − d
n )(8β∗)

d
2n eβ∗/2D d

n

(
−
√

2β∗
)

, (7)

where we use the integral representation

Da(z) =
e−z2/4

Γ(−a)

∫ ∞

0
dt t−a−1

[
e−t2/2−zt − Θ(a)

]
, a < 1, (8)

for the parabolic cylinder function (Equation (12.5.1) Available online: https://dlmf.nist.
gov/12.5.E1 (accessed on 16 November 2025)) [10]. In Equation (8), Θ(a) denotes the
Heaviside step function. It ensures convergence of the integral at the lower integration
limit. For a < 0, the integrand t−a−1e−t2/2−zt is integrable at t = 0 without modification.
However, for 0 < a < 1, the behavior t−a−1 near t = 0 causes a divergence. The subtraction
of Θ(a) = 1 removes the leading constant term from the small-t expansion of the exponen-
tial, regularizing the integral while preserving the correct value of Da(z) through analytic
continuation in a.

Naturally, the situation is more involved for the quantum contribution Bq. In a recent
work, Zhao et al. [8] derived a linear, second-order homogeneous ordinary differential
equation for the sLJ coefficient Bq. From its solution, they obtained the following:

Bq(T∗) =
1

3 × 2
11
6

[
Γ( 5

12 )F(T∗)− Γ(− 1
12 )G(T∗)

]
, (9)

where

F(T∗) = β∗ 19
12
[
72 1F1(

5
12 ; 1

2 ; β∗)− 22 1F1(
5

12 ; 3
2 ; β∗)

]
, (10a)

G(T∗) = β∗ 13
12
[
12β∗

1F1(
11
12 ; 3

2 ; β∗) + 11 1F1(− 1
12 ; 1

2 ; β∗)
]
. (10b)

Here, 1F1(a; b; z) denotes the Kummer confluent hypergeometric function (Equation (13.2.2)
Available online: https://dlmf.nist.gov/13.2.E2 (accessed on 16 November 2025)) [10]. The
result given by Equations (9) and (10) was first obtained by Michels [4].
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2. First Quantum Correction to the Second Virial Coefficient
Our goal is to derive an alternative, more compact expression for Bq in the broader

case of the gLJ fluid. We begin by stating the final result:

Bq(T∗) = n
Γ(2 − d−2

n )

8
(8β∗)

d−2
2n +1eβ∗/2

[
D d−2

n

(
−
√

2β∗
)
+ D d−2

n −2

(
−
√

2β∗
)]

. (11)

Before proving Equation (11), we list several useful properties of the parabolic cylinder
function [10]:

Da(z) = zDa−1(z) + (1 − a)Da−2(z), (12a)

∂Da(z)
∂z

= aDa−1(z)−
z
2

Da(z), (12b)

lim
z→0

Da(z) =
√

π2
a
2

Γ( 1−a
2 )

, lim
z→∞

Da(−z) =
√

2π

Γ(−a)
ez2/4z−a−1, (12c)

D0(z) = e−z2/4, D−2(z) = e−z2/4 −
√

π

2
ez2/4z erfc

(
z√
2

)
, (12d)

Da(
√

2z) = 2−
a
2 e−z2/2Ha(z). (12e)

Equation (12e) defines the generalized Hermite functions Ha(z) for arbitrary (noninteger)
degree a < 1 (Equation (12.7.2) Available online: https://dlmf.nist.gov/12.7.E2 (accessed
on 16 November 2025)) [10].

By introducing the change of variable x → t =
√

8β∗x−n in Equation (6b), we obtain
the following:

Bq(T∗) =
n
8
(8β∗)

a
2+1

∫ ∞

0
dt t−a+1e−t2/2−zt

(
z2 + 2zt + t2

)
, (13)

where we have used the notation a ≡ d−2
n , z ≡ −

√
2β∗. Using the integral representation

of the parabolic cylinder function [see Equation (8)], Equation (13) can be rewritten as
follows:

Bq(T∗) =n
Γ(2 − a)

8
(8β∗)

a
2+1ez2/4

[
z2Da−2(z) + 2(2 − a)zDa−3(z)

+ (3 − a)(2 − a)Da−4(z)
]
. (14)

This expression is already quite compact, but it can be further simplified. Iterative applica-
tion of Equation (12a) yields the following:

Da(z) =z[zDa−2(z) + (2 − a)Da−3(z)] + (1 − a)Da−2(z)

=z2Da−2(z) + (2 − a)zDa−3(z) + (2 − a)Da−2(z)− Da−2(z). (15)

Next, we apply Equation (12a) to the term (2 − a)Da−2(z), which gives the following:

Da(z) = z2Da−2(z) + 2(2 − a)zDa−3(z) + (3 − a)(2 − a)Da−4(z)− Da−2(z). (16)

Substituting this identity into Equation (14), and returning to the physical variables a → d−2
n

and z → −
√

2β∗, we recover Equation (11). In terms of the generalized Hermite functions,
Equation (11) can be rewritten as follows:

Bq(T∗) = n
Γ(2 − d−2

n )

4
(4β∗)

d−2
2n +1

[
H d−2

n

(
−
√

β∗
)
+ 2H d−2

n −2

(
−
√

β∗
)]

. (17)

https://dlmf.nist.gov/12.7.E2
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For the particular case of the sLJ model (d = 3, n = 6), the following is written:

Bq(T∗) =
3Γ( 11

6 )

4
(8β∗)

13
12 eβ∗/2

[
D 1

6

(
−
√

2β∗
)
+ D− 11

6

(
−
√

2β∗
)]

=
3Γ( 11

6 )

2
(4β∗)

13
12
[
H 1

6

(
−
√

β∗
)
+ 2H− 11

6

(
−
√

β∗
)]

. (18)

It can be verified that Equation (18) is equivalent to the combination of Equations (9)
and (10).

The limits given by Equation (12c) allow us to determine the low- and high-
temperature behaviors of Bq(T∗) for the gLJ fluid:

lim
T∗→0

Bq(T∗) = n
√

π2
d−2

n +1e1/T∗
T∗− 3

2 , lim
T∗→∞

Bq(T∗) = n
Γ(2 − d−2

2n )

2

(
4

T∗

) d−2
2n +1

. (19)

In the second equality of Equation (19), use has been made of the identity Γ(2x)/Γ(x) =
22x−1Γ(x + 1

2 )/
√

π.
Interestingly, Equation (11) simplifies considerably in the case of a two-dimensional

fluid (d = 2). Using Equation (12d), we obtain the following:

Bq(T∗) = nβ∗
[
2 +

√
πβ∗eβ∗ erfc(−

√
β∗)
]
. (20)

In this case, the ratio Bq/n is independent of the stiffness parameter n. It is worth
mentioning that Equation (20) also provides the ratio Bq/n in the limit n → ∞ for
any dimensionality.

Figure 1 illustrates the temperature dependence of Bq(T∗) for the two- and three-
dimensional gLJ fluids with n = 4, 5, 6, 7, 8, and 12. As can be seen, for a given T∗,
the reduced first quantum correction Bq increases as the potential becomes stiffer. Moreover,
the influence of n is more pronounced at high temperatures than at low temperatures,
consistent with the limiting behaviors described by Equation (19). For the same values of
T∗ and n, Bq is larger in the two dimensions than in three.

0 20 40 60 80 100
0.01

0.10

1

10

100

(a)

0 20 40 60 80 100
0.01

0.10

1

10

100

(b)

Figure 1. Reduced first quantum correction to the second virial coefficient, as given by Equation (11),
for the gLJ fluid with (a) d = 2 and (b) d = 3. The curves correspond, from bottom to top, to stiffness
parameters n = 4, 5, 6, 7, 8, and 12.

3. First Quantum Correction to the Boyle Temperature
From Equation (1), the reduced second virial coefficient of the gLJ fluid can be writ-

ten as follows:
2d

Ωdσd B2(T∗) = Bc(T∗) +
d
12

qBq(T∗) +O(q2), (21)
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where the dimensionless quantum parameter

q ≡ h̄2

mσ2ϵ
(22)

measures the expected magnitude of quantum effects.
The Boyle temperature, T∗

B , is defined by the condition B2(T∗
B) = 0. It marks the

balance between the attractive and repulsive contributions to the intermolecular potential:
the attractive interactions dominate for T∗ < T∗

B , whereas the repulsive ones dominate for
T∗ > T∗

B . In the semiclassical regime, the Boyle temperature can be expanded as follows:

T∗
B = T∗

0 − qT∗
1 +O(q2), (23)

where T∗
0 is the classical Boyle temperature, i.e., the solution of Bc(T∗

0 ) = 0, or equivalently,
Dd/n(−

√
2/T∗

0 ) = 0. By inserting Equation (23) into Equation (21), one obtains the first
quantum correction to the Boyle temperature,

T∗
1 =

d
12

Bq(T∗
0 )

∂Bc(T∗)/∂T∗|T∗
0

. (24)

Note that ∂Bc/∂T∗ = −T∗−2∂Bc/∂β∗, where, from Equations (7) and (12b), one finds

∂Bc

∂β∗ =
d
n

[
Bc

2β∗ −
Γ(1 − d

n )√
2β∗ (8β∗)

d
2n eβ∗/2D d

n −1

(
−
√

2β∗
)]

. (25)

Thus, one finally obtains the following:

T∗
1 = n2 Γ(2 − d−2

n )

3Γ(1 − d
n )

(
T∗

0
8

) 1
2+

1
n D d−2

n
(−
√

2/T∗
0 ) + D d−2

n −2(−
√

2/T∗
0 )

D d
n −1(−

√
2/T∗

0 )
. (26)

Figure 2 shows T∗
0 and T∗

1 as functions of n for d = 2 and d = 3. While the classical
Boyle temperature T∗

0 decreases as the potential becomes stiffer, the first quantum correc-
tion T∗

1 increases with n. As a result, quantum effects amplify the decrease of the Boyle
temperature with increasing stiffness, as illustrated by the curves representing T∗

0 − qT∗
1

with q = 5 × 10−3. This effect is more pronounced in two-dimensional fluids than in
three-dimensional ones.

5 10 15 20
0.1

0.5

1

5

10

50

100

(a)

5 10 15 20
0.1

0.5

1

5

10

50

100

(b)

Figure 2. Classical Boyle temperature T∗
0 (solid lines) and its first quantum correction T∗

1 (dashed
lines) as functions of the stiffness parameter n for the gLJ fluid with (a) d = 2 and (b) d = 3.
The dotted lines represent the quantum-corrected Boyle temperature T∗

B , obtained from Equation (23)
with q = 5 × 10−3.
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4. Application to Noble Gases
In the case of the sLJ model, the influence of quantum effects on the second virial

coefficient can be assessed through the relative deviation, written as follows:

δB∗
2 (T) ≡

B2(T)− B(0)(T)
B2(T)

=
q
4

Bq(T∗)

Bc(T∗)
+O(q2)

=q
5Γ
( 5

6
)

32
√

π
(8β∗)

5
6

D 1
6

(
−
√

2β∗)+ D− 11
6

(
−
√

2β∗)
D 1

2

(
−
√

2β∗) +O(q2). (27)

To first order in the quantum parameter q, we note that the relative deviation δB∗
2 (T) is

compactly expressed in terms of the parabolic cylinder functions D 1
2
, D 1

6
, and D− 11

6
.

As a simple application, we consider the noble gases helium (He), neon (Ne), and argon
(Ar), which can be described by the sLJ potential with the parameter values for ϵ and σ

displayed in Table 1 [11]. The atomic masses, m, and the dimensionless quantum parameter,
q, defined in Equation (21) are also included in Table 1.

Table 1. Values of m, ϵ, σ, and q for the noble gases He, Ne, and Ar.

Gas m (kg) ϵ/kB (K) σ (m) q

He 6.646 × 10−27 10.22 2.576 × 10−10 0.179
Ne 3.351 × 10−26 35.70 2.749 × 10−10 8.91 × 10−3

Ar 6.634 × 10−26 119.8 3.405 × 10−10 8.74 × 10−4

When comparing δB∗
2 for helium, neon, and argon, one finds that two competing

effects are at play. On the one hand, since ϵHe < ϵNe < ϵAr, a common fixed temperature
T corresponds to T∗

He ≃ 11.7 T∗
Ar > T∗

Ne ≃ 3.36 T∗
Ar > T∗

Ar, so that, in view of Figure 1b for
n = 6, Bq,He < Bq,Ne < Bq,Ar. On the other hand, qHe ≃ 204.4 qAr > qNe ≃ 10.2 qAr > qAr.
The second effect dominates, as can be observed in Figure 3.

0 200 400 600 800 1000
0.001

0.005

0.010

0.050

0.100

Figure 3. Absolute value of the relative deviation, |δB∗
2 (T)|, for helium, neon, and argon, obtained

from Equation (27) to first order in q.

Note that, because Bc(T∗) vanishes at the classical Boyle temperature T∗
0 ≃ 3.42,

|δB∗
2 (T)| diverges at T = T∗

0 ϵ/kB, as seen in Figure 3 for neon and argon. Apart from this
singularity, since quantum effects scale roughly as (mϵ)−1, helium exhibits the strongest
quantum corrections, neon has moderate corrections, and argon has the weakest quantum
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effects at any given temperature. This behavior explains why helium remains liquid at
atmospheric pressure down to absolute zero (quantum effects prevent solidification), while
argon solidifies at 84 K and behaves largely classically at typical temperatures.

5. Outlook
Although in this work we have focused on the first quantum correction to B2, the same

methodology can be extended to higher-order terms. The convergence of the quantum
expansion in powers of h̄2/m depends on the temperature regime and the strength of the
interaction. For systems like helium at very low temperatures, higher-order corrections
may become necessary for quantitative accuracy.

In particular, the general expression for the second-order correction reads [1,2] as
follows:

B(2)(T) =− Ωdβ4

24

∫ ∞

0
dr rd−1e−βϕ(r)

{
1

10

[
d2ϕ(r)

dr2

]2

+
1

5r2

[
dϕ(r)

dr

]2

+
β

9r

[
dϕ(r)

dr

]3

− β2

72

[
dϕ(r)

dr

]4
}

. (28)

Specializing to the gLJ potential, Equation (4), and introducing the change of variable
r → t =

√
8β∗(r/σ)−n, one can express B(2) in terms of the parabolic cylinder functions

Da−2(−
√

2β∗), Da−3(−
√

2β∗), . . ., Da−8(−
√

2β∗), with a = d−4
n . This expression can be

further simplified through repeated application of Equation (12a).
The systematic nature of our approach—reducing complex integrals to combinations

of parabolic cylinder functions—extends naturally to arbitrary orders. This provides
a practical computational framework for exploring the convergence properties of the
quantum expansion and for determining when higher-order terms become significant. Such
analysis would be particularly relevant for light atoms like helium at temperatures below
∼ 50 K, where the ratio qBq(T∗)/4Bc(T∗) approaches unity and second-order corrections
are no longer negligible.

6. Conclusions
In this paper, we have derived an explicit and compact expression, Equation (11),

for the first quantum correction to the second virial coefficient of a d-dimensional fluid
composed of particles interacting through the gLJ (2n, n) potential defined in Equation (4).
As in the classical case, Equation (8), the first quantum correction has been conveniently
expressed in terms of parabolic cylinder functions. For the particular case of the sLJ fluid
(d = 3, n = 6), the expression obtained here for Bq [see Equation (18)] is considerably more
concise than the combination of Equations (9) and (10) reported previously [4,8].

An additional asset of the present results is that they allow one to explore the combined
influence of dimensionality and stiffness on the quantum correction Bq. From Equation (11),
it follows that the ratio Bq/n depends on d and n only through the combination (d − 2)/n.
This implies that, at a given reduced temperature T∗, the value of Bq/n for a d-dimensional
fluid (d > 3) with stiffness n is identical to that of a three-dimensional fluid with an effective
stiffness neff = n/(d − 2). In contrast, for two-dimensional fluids, Bq/n is independent of n
and is given by the particularly simple expression of Equation (20), which is also applicable
to any d in the limit n → ∞.

The knowledge of Bq has enabled us to derive the first quantum correction to the
Boyle temperature [see Equation (26)]. As illustrated by Figures 1 and 2, the general
trend is that the quantum corrections to both the second virial coefficient and the Boyle
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temperature become more significant as the potential stiffness increases and the system
dimensionality decreases.

We have applied our results to the noble gases helium, neon, and argon, demonstrating
that the relative quantum correction δB∗

2 (T) decreases significantly (in absolute value) from
helium to argon, primarily due to the strong dependence on the quantum parameter
q ∝ (mϵ)−1. This application illustrates the practical utility of our compact expressions for
assessing quantum effects in real physical systems.

In summary, we have obtained a compact and fully explicit expression for the first
quantum correction to the second virial coefficient of a d-dimensional gLJ fluid, expressed
in terms of parabolic cylinder or generalized Hermite functions. The formulation unifies the
treatment of dimensionality and stiffness, provides analytic access to the limiting behaviors,
and naturally yields the quantum correction to the Boyle temperature. Beyond its intrinsic
theoretical interest, the approach presented here provides a systematic framework for
deriving higher-order quantum corrections (as discussed in Section 5) of relevance in
quantum and semiclassical fluid theory, and its application to noble gases demonstrates
its utility for understanding quantum effects in real molecular systems. The compact
analytical nature of our results also makes them particularly valuable for pedagogical
purposes, providing students and researchers with transparent expressions that reveal the
underlying structure of quantum corrections and facilitate the development of physical
intuition about quantum effects in fluids.
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