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Particles, trajectories, and diffusion: Random walks in cooling granular gases
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We study the mean-square displacement (MSD) of a tracer particle diffusing in a granular gas of inelastic
hard spheres under homogeneous cooling state. Tracer and granular gas particles are in general mechanically
different. Our approach uses a series representation of the MSD where the kth term is given in terms of the mean
scalar product 〈r1 · rk〉, with ri denoting the displacements of the tracer between successive collisions. We find
that this series approximates a geometric series with the ratio �. We derive an explicit analytical expression
of � for granular gases in three dimensions and validate it through a comparison with the numerical results
obtained from the direct simulation Monte Carlo (DSMC) method. Our comparison covers a wide range of
masses, sizes, and inelasticities. From the geometric series, we find that the MSD per collision is simply given
by the mean-square free path of the particle divided by 1 − �. The analytical expression for the MSD derived
here is compared with DSMC data and with the first- and second-Sonine approximations to the MSD obtained
from the Chapman-Enskog solution of the Boltzmann equation. Surprisingly, despite their simplicity, our results
outperform the predictions of the first-Sonine approximation to the MSD, achieving accuracy comparable to the
second-Sonine approximation.

DOI: 10.1103/mzkp-595j

I. INTRODUCTION

In two articles published in 1906 (one on the kinetic theory
of diffusion in molecular gases [1] and the other on the kinetic
theory of Brownian motion [2]; the former complementing
Einstein’s famous 1905 article on the same subject [3]),
Smoluchowski pioneered the use of tools from what is now
recognized as random walk theory (or stochastic processes)
to determine, among other things, the diffusion coefficient
of a tracer (or intruder) particle in a molecular gas. Smolu-
chowski’s results are based on two main assumptions. First, it
is assumed that if the tracer particle is immersed in a dilute
gas, its mean free path is much larger than the size of the gas
molecules. Second, it is further assumed that the tracer particle
scatters isotropically after colliding with other molecules (an
assumption that is not acceptable even to a first approximation
if the tracer is Brownian, namely, when it is much more

*Contact author: santos@unex.es; https://fisteor.cms.unex.es/
investigadores/santos-bravo-yuste/

†Contact author: ruben@unex.es
‡Contact author: vicenteg@unex.es; https://fisteor.cms.unex.es/

investigadores/vicente-garzo-puertos/

massive than the gas molecules). Under these assumptions, the
MSD of the tracer particle, 〈R2〉, after N collisions is given by〈

R2
〉 = 2N〈r〉2, (1)

where 〈r〉 is the mean free path (r is the free path). Since
〈r〉 = 〈v〉τ (where τ = t/N is the mean free time between
collisions during time t and 〈v〉 is the mean velocity, with
v being the velocity of the particle between two successive
collisions), then it follows that〈

R2
〉 = 2〈r〉〈v〉t . (2)

Equation (2) leads to the diffusion coefficient

D =
〈
R2

〉
6t

= 〈r〉〈v〉
3

≡ DeKT. (3)

Equation (3) is nothing more than the expression of the
diffusion coefficient given by the elementary kinetic theory,
traceable back to Boltzmann, and found in standard textbooks
[4]. In Ref. [2], Smoluchowski further noted that the tracer
particle, after colliding with a gas molecule (especially if the
tracer particle is heavy), tends to be scattered in a direction
similar to the direction it was carrying before the collision.
This is known as persistence of the collisions. This fact
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explains why the elementary formula (3) is only a first approx-
imation. Smoluchowski dared in Ref. [2] to make an estimate
of the correction to the MSD due to persistence by introducing
in his analysis the mean value of the angle at which the
direction of motion of the particle changes in each collision.
As Smoluchowski himself pointed out (Sec. 7 of Ref. [1]),
Jeans had already observed in 1904 [5] that consideration of
the existence of persistence in collisions was necessary for
a better microscopic explanation of the properties of gases
and, in particular, for a better estimate of the tracer diffusion
coefficient [6].

To the best of our knowledge, the first rigorous analyisis
of the MSD of a particle in a gas by means of a random walk
approach was addressed by Yang in 1949 [7]. The MSD is
defined as

〈R2〉 = 〈R · R〉 =
N∑

i=1

N∑
j=1

〈ri · r j〉, (4)

where r j are the displacements of the particle between suc-
cessive collisions and R = ∑N

i=1 ri is the displacement of the
particle after N collisions. (As we mention below, although
Yang’s estimates for the first few terms 〈ri · r j〉 for elastic hard
spheres were quite inaccurate, he did provide the expressions
needed to determine them.) In particular, if the persistence
in collisions is neglected, then 〈ri · r j〉 = 0 when i �= j and
the MSD reduces to the elementary expression 〈R2〉 = N〈r2〉,
where 〈r2〉 ≡ 〈r2

i 〉 denotes the mean value of the square of the
free path (MSD between two successive collisions). In terms
of the mean free time τ = t/N , the MSD can be rewritten as
〈R2〉 = 〈r2〉t/τ , which yields the following expression of the
diffusion coefficient D:

D = 〈R2〉
6t

= 〈r2〉
6τ

≡ DeRW. (5)

While very similar, this expression DeRW for the diffu-
sion coefficient is not exactly equal to DeKT. This is because
〈r〉〈v〉 is not exactly equal to 〈r2〉/(2τ ) = 〈rv〉 (see Sec. V
of Ref. [8]). Just as Smoluchowski in Ref. [2] improved the
estimation of the diffusion coefficient by including the effects
of persistence, the elementary expression (5) for D can also
be improved if the persistence in collisions (which implies
〈ri · r j〉 �= 0) is accounted for. Unfortunately, as said before,
Yang’s estimate of the terms with i �= j for a gas of elastic
hard spheres was deficient. This is understandable given the
computational limitations in the late 1940s when Yang carried
out the calculations for his article. The first three terms with
i �= j (i.e., 〈r1 · r2〉, 〈r1 · r3〉, and 〈r1 · r4〉) for the case of
an elastic hard sphere gas have recently been calculated in
Ref. [8]. In this paper, it was observed that the corrections due
to the persistence of collisions to the elementary value DeRW

of the diffusion coefficient decay, in a very good approxima-
tion, exponentially. The factor by which these terms decrease
is very well approximated by the quantity known in kinetic
theory of gases as the mean-persistence ratio 〈ω〉 [9]. This
result led us to propose in Ref. [8] the following expression
for the MSD after N collisions:

〈R2〉 = N
〈r2〉

1 − 〈ω〉 . (6)

From Eqs. (5) and (6), and N = t/τ , one gets

D = DeRW

1 − 〈ω〉 . (7)

The expression (7) for the diffusion coefficient (or equiva-
lently for the MSD) substantially improve the corresponding
elementary expressions. In fact, they provide results compa-
rable to the standard results of the kinetic theory of gases
derived from the Chapman-Enskog solution of the Boltzmann
equation [8].

The aim of the present work is to generalize the arguments
used in Ref. [8] for calculating the MSD in molecular gases
to granular gases. It is well known that, under rapid flow
conditions, a granular gas can be modeled as a gas of hard
spheres with inelastic collisions. If the spheres are assumed
to be perfectly smooth, then the inelasticity in collisions is ac-
counted for only by a constant coefficient of normal restitution
0 < α � 1. When α = 1, the collisions are elastic. In a binary
collision in the inelastic hard sphere model, the tangential
component of the relative velocity of the two colliding spheres
remains unchanged, while its normal component is shrunk by
a factor α. Since in our problem the tracer and the particles of
the granular gas are in general mechanically different, there
are two different coefficients of restitution: α (associated with
the collisions between the granular particles themselves) and
α0 (associated with the collisions between the tracer and the
particles of the granular gas). As in Ref. [8], our goal here
is to determine the diffusion of a tracer particle moving in a
freely cooling granular gas. In this homogeneous state (which
is referred to as the homogeneous cooling state (HCS) in the
granular literature [10,11]) the grains collide freely and cool
accordingly. However, one of the most characteristic features
of granular gases (as compared to conventional molecular
gases) is the spontaneous formation of velocity vortices and
density clusters in freely cooling flows [12,13]. The instability
of the HCS can be well described by a linear stability analysis
of the granular version of the Navier–Stokes hydrodynamic
equations [14–21]. The analysis clearly shows that the origin
of the above instability is related to inelasticity in collisions,
and since it is limited to small wave numbers, it can be avoided
for sufficiently small systems. The study of diffusion in freely
cooling granular gases provided in this paper is limited to
situations where the HCS is stable and thus the granular gas
maintains its homogeneous state.

As previously mentioned, in this article we analyze the dif-
fusion of a tracer granular particle in a granular gas under HCS
using a procedure that views the motion of the tracer particle
as a random walk. It is important to remark that this procedure
for inelastic collisions is fundamentally different from the one
followed in granular kinetic theory [11] when one extends the
conventional Chapman–Enskog method [9] to granular gases.
In this paper, we will compare our findings derived from
random walk arguments with (i) previous theoretical results
[22,23] for the tracer diffusion coefficient derived from the
Chapman–Enskog solution in the so-called first and second
Sonine approximations, and with (ii) our computer simulation
results obtained from the DSMC method [24].

It is important to note that, although this paper focuses on
validating our random walk method primarily via an analysis
of the MSD for long times, our procedure also describes (see
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Sec. IV C) the MSD behavior across all temporal regimes:
ballistic at very short times, diffusive or subdiffusive at in-
termediate times and subdiffusive at long times (provided
inelastic collisions exist).

The organization of the article is as follows. In Sec. II, we
describe the system (granular gas plus tracer particle) we are
interested in and give some known relationships that will be
used throughout this paper. The MSD of the tracer particle
in terms of its elementary displacements (or free paths) ri is
given in Sec. III and evaluated in Sec. IV. In this section it
is shown that the MSD can be approximated by a geometric
series (which we call the collisional series) where the ratio
between the successive terms is expressed by means of aver-
ages that involve the velocities before and after the collision
and the scattering angles. For inelastic collisions, this ratio is
the mean-persistence ratio 〈ω〉 of kinetic theory of gases. In
Sec. V, we provide a theoretical expression, denoted by �, to
estimate the collisional series ratio for a tracer particle moving
in a granular gas in HCS. Computer simulation results ob-
tained from the DSMC method [24] are presented in Sec. VI.
These simulation data are used to validate that the collisional
series closely approximates a geometric series and that � ac-
curately predicts its ratio. We also compare the MSD derived
from � with simulation data, finding surprisingly good agree-
ment between theory and simulation. We show that this is due
to the cancellation of errors in the auxiliary (or intermediate)
approximations employed to arrive at the final expressions
for � and the MSD. In Sec. VII, we further compare the
theoretical and computational results derived here with those
previously obtained [22] by solving the Boltzmann–Lorentz
equation by means of the Chapman–Enskog method [9]. We
end the paper in Sec. VIII where we collect some conclusions,
remarks, and possible extensions of this work.

II. TRACER PARTICLE MOVING IN A GRANULAR
GAS UNDER HCS

We consider a physical system consisting of a tracer (or
intruder) particle immersed in a granular gas. Both the tracer
and particles of the granular gas are modeled as a gas of
hard spheres with inelastic collisions. The intruder may be
identical to or different from the gas particles (grains). The
granular gas is assumed to be in HCS, namely, a homogeneous
state where the granular temperature T decreases in time.
Detailed descriptions and relevant equations are provided in
Refs. [11,25].

We denote the mass and diameter of the granular gas par-
ticles as m and σ , respectively, and those of the intruder as
m0 and σ0. Throughout this article, we use the convention
that intruder-related quantities are indicated by a subscript 0.
Accordingly, the inelasticity of collisions between granular
gas particles is quantified by the coefficient of normal resti-
tution α, while the inelasticity for intruder-gas collisions is
characterized by the coefficient of normal restitution α0.

Due to the inelastic character of collisions, the mean ki-
netic energy (granular temperature) of the granular gas decays
with time. Its evolution equation is [10,11]

∂t ln T (t ) = −ζ (t ), (8)

where ζ is the cooling rate. This quantity gives the rate of en-
ergy dissipation due to inelastic collisions. Since for inelastic
hard spheres ζ (t ) ∝ √

T (t ), the integration of Eq. (8) yields
Haff’s law [26]:

T (t ) = T (0)

(1 + t/tζ )2
, (9)

where T (0) is the initial temperature, tζ = 2/ζ (0) is the char-
acteristic cooling time, and ζ (0) is the cooling rate at t = 0.
The partial temperature T0(t ) of the tracer particle is a relevant
quantity at a kinetic level as it provides a measure of its mean
kinetic energy. In the HCS, T0(t ) ∝ T (t ) but the temperature
ratio T0(t )/T (t ) remains constant in time and, in general, is
different from 1 (breakdown of kinetic energy equipartition
assumption) [27]. The condition for determining the temper-
ature ratio is ζ (t ) = ζ0(t ), where ζ0 is the partial cooling rate
associated with T0. Given that both cooling rates are given in
terms of the distribution functions of the granular gas and
the tracer particles (whose exactly forms are not known to
date), one usually approximates these distributions by their
Maxwellian forms. In this approximation and in terms of the
auxiliary parameter

β = m0T

mT0
, (10)

the temperature ratio is the unique positive root of the equa-
tion [25,27]:

1 − α2

d
= 2

√
2

d
μ

χ0

χ

(
σ̄

σ

)d−1(1 + β

β

)1/2

(1 + α0)

×
[

1 − 1

2
μ(1 + β )(1 + α0)

]
. (11)

Here, d is the dimensionality of the system (d = 3 for spheres
and d = 2 for disks), and χ and χ0 are the pair correlation
functions at contact for the granular gas and the intruder-gas
particles, respectively. Moreover,

μ = m

m + m0
, (12)

σ̄ = σ + σ0

2
. (13)

Note that Eq. (11) can be converted into a cubic equation for
β, allowing for an explicit, albeit cumbersome, solution.
Nevertheless, the numerical resolution of Eq. (11) is straight-
forward and efficient. The parameter β derived from the
physical solution to Eq. (11) is time-independent because all
coefficients in that equation are constant. This means the ratio
T (t )/T0(t ) given by Eq. (10) is also time-independent in the
HCS. Consequently, T (t ) y T0(t ) share the same temporal
dependence, which for T (t ) is given by Eq. (9) while for
T0(t ) is

T0(t ) = T0(0)

(1 + t/tζ )2
. (14)

A decrease in the gas temperature (mean kinetic energy
and, consequently, mean velocity) implies that the (aver-
age) collision frequencies ν(t ) and ν0(t ) for grain-grain and
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intruder-grain collisions, respectively, are decreasing func-
tions of time. The collision frequency ν(t ) is given by [11]

ν(t ) =
√

2π (d−1)/2



(

d
2

) nσ d−1χvth(t ), (15)

where n denotes the number density of the granular gas parti-
cles and

vth =
√

2T (t )

m
(16)

is the thermal velocity. The expression (15) for ν is identical
to that for molecular (elastic) gases, except that for granular
gases the thermal velocity decreases over time due to the
inelastic nature of collisions. The intruder-grain collision fre-
quency ν0(t ) is well approximated by the relation [25]

ν0(t ) = ϒ ν(t ), (17)

where

ϒ =
(

σ̄

σ

)d−1
χ0

χ

(
1 + β

2β

)1/2

. (18)

From the collision frequency ν0(t ), we obtain the average
number of collisions in time t :

s0(t ) =
∫ t

0
ν0(t ′)dt ′ = ϒs(t ), (19)

where

s(t ) =
∫ t

0
ν(t ′)dt ′ (20)

is the mean number of collisions experienced by a granular gas
particle with the other particles of the granular gas during time
t . An explicit expression for ν(t ) is obtained by using Haff’s
law (9) in the thermal velocity expression (16). Integration of
Eq. (15) yields

s(t ) = 2ν(0)

ζ (0)
ln

(
1 + ζ (0)

2ν(0)
t∗

)
= tζ

τ (0)
ln(1 + t/tζ ), (21)

where t∗ = ν(0)t = t/τ (0) is the time in units of the initial
intercollisional time τ (0) = ν(t = 0)−1 of the gas particles.
From Eqs. (19) and (21) we obtain the mean number of in-
truder collisions up to time t :

s0(t ) = tζ
τ0(0)

ln
(
1 + t/tζ

)
, (22)

where τ0(0) = 1/ν0(0) is the initial mean collision time
between the intruder and the gas particles. A good approxi-
mation for tζ is given by tζ /τ (0) = 2d/(1 − α2) [25], which,
from Eq. (17), implies

tζ
τ0(0)

= ϒ
tζ

τ (0)
= 2dϒ

1 − α2
. (23)

The Maxwell mean free path [28] �M is defined as

�M ≡ v̄(t )

ν(t )
, (24)

where v̄ ≡ 〈v〉 denotes the average speed modulus. The
Maxwell mean free path of the particles of the granular gas has

the same form as for conventional molecular (elastic) gases:

�M = v̄(t )

ν(t )
= 


(
d+1

2

)
√

2π (d−1)/2

1

nσ d−1χ
. (25)

Analogoulsy, the Maxwell mean free path of the intruder,
�0M ≡ v̄0(t )/ν0(t ), is given by [25]

�0M = �M

ϒ
√

β
. (26)

III. THE INTRUDER AS A RANDOM WALKER.
MEAN-SQUARE DISPLACEMENT

Taking the intruder’s position R(t = 0) immediately after a
collision as the initial position and this collision time as t = 0,
the intruder’s position after N collisions is RN = ∑N

i=1 ri,
where ri is the ith displacement between the ith and (i − 1)th
collisions (with the initial collision labeled as 0). As usual, the
intruder diffusion is quantified by the variance of its position
after time t . With no external forces, the mean position is
〈R(t )〉 = 0, so the variance is simply 〈R2〉.

To evaluate the intruder’s position variance 〈R2(t )〉 after
time t , we begin by considering the variance after N displace-
ments (or equivalently, steps or collisions):〈

R2
N

〉 = 〈RN · RN 〉

=
N∑

i=1

〈ri · ri〉 + 2
N−1∑
i=1

〈ri · ri+1〉 + 2
N−2∑
i=1

〈ri · ri+2〉

+ · · · . (27)

In the HCS state, free paths between collisions are time-
independent (see Sec. VII), so that〈

R2
N

〉 = N〈r1 · r1〉 + 2(N − 1)〈r1 · r2〉 + 2(N − 2)〈r1 · r3〉
+ · · ·

= N〈r1 · r1〉 + 2
N−1∑
k=1

(N − k)〈r1 · r1+k〉. (28)

Equation (28) can be rewritten as〈
R2

N

〉 = N�2
e, (29)

where �e is the effective free path. This name is justified
because the MSD of a walk with N isotropic, uncorrelated
steps of fixed size �e is exactly given by Eq. (29). Note that �2

e
is the MSD of the intruder per collision. Comparing Eq. (29)
with Eq. (28), the effective free path can be approximated by

�2
e ≈ 〈

r2
1

〉 + 2〈r1 · r2〉 + 2〈r1 · r3〉 + · · · (30)

for large N . Upon writing Eq. (30) we have assumed that
steps r1 and rk decorrelate rapidly enough that the error in
the approximation

(N − k − 1) 〈r1 · rk〉 ≈ N〈r1 · rk〉 (31)

is negligible even for large k. This assumption holds except
for extreme cases where the mass ratio m0/m is large and the
diameter ratio σ0/σ is small (see Sec. VI). In fact, we will
show that, to a very good approximation, these correlations
decay exponentially, with 〈r1 · rk〉 tending toward zero as k
increases. This point will be discussed in Sec. VI.
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It is convenient to rewrite Eq. (30) as

�2
e

〈r2〉 =
〈
R2

N

〉
N〈r2〉 ≈ 1 + 2〈r1 · r2〉

〈r2〉 + 2〈r1 · r3〉
〈r2〉 + · · ·

≡
∞∑

k=1

ck, (32)

where we have defined

c1 = 1, (33a)

ck ≡ 2
〈r1 · rk〉

〈r2〉 , k � 2. (33b)

The notation 〈r2〉 is introduced as a simplification of 〈r2
1〉,

i.e., 〈r2〉 ≡ 〈r2
1〉. We call collisional series to the series in

Eq. (30) and reduced collisional series to
∑∞

n=1 cn. In sum-
mary, Eqs. (29) and (32) tell us that the MSD of the intruder
per step, 〈R2

N 〉/N , is the mean-square free path, 〈r2〉, corrected
by the reduced collisional series.

As stated in Sec. I, neglecting collision persistence (i.e., as-
suming isotropic postcollision scattering) leads to 〈ri · r j〉 = 0
for i �= j. In this approximation, one gets the elementary MSD
〈R2

N 〉 = N〈r2〉. Thus, the reduced collisional series corrects
the elementary MSD to yield the correct MSD. In this con-
text, the reduced collisional series quantify the impact of the
collision persistence on the MSD of the intruder.

Finally, to relate 〈R2(t )〉 and 〈R2
N 〉, we consider the prob-

ability density function (pdf) of the intruder’s position R at
time t :

P(R, t ) =
∞∑

N=0

PN (R)ξN (t ). (34)

Here, PN (R) is the pdf of the position of the walker after N
steps and ξN (t ) is the probability of taking exactly N steps by
time t . Substituting Eq. (34) into the relation

〈R2(t )〉 =
∫

P(R, t )R2 dR (35)

and swapping the summation and integration order, we get

〈R2(t )〉 =
∞∑

N=0

ξN (t )
∫

PN (R)R2 dR =
∞∑

N=0

ξN (t )
〈
R2

N

〉
. (36)

Using Eq. (29), we arrive at

〈R2(t )〉 = �2
e

∞∑
N=0

ξN (t )N = 〈N (t )〉 �2
e ≡ s0(t ) �2

e, (37)

where 〈N (t )〉 is the average number of steps (collisions) taken
by the random walker (the intruder) up to time t . We denoted
〈N (t )〉 as s0(t ) in Sec. II.

IV. MSD AS A GEOMETRIC SERIES

Since s0(t ) is known [see Eq. (22)], Eq. (30) indicates
that to evaluate 〈R2(t )〉 we need only to evaluate �2

e , i.e., the
averages 〈r1 · rk〉. Exact evaluation of these quantities, even
for small k and molecular (elastic) gases, is challenging (see
Ref. [8] for more details). Unfortunately, the method used
in Ref. [8] to rigorously compute these quantities cannot be

used for granular gases because detailed balance is not satis-
fied when the collisions between the particles are inelastic.
Nevertheless, Ref. [8] showed that the method followed in
this paper built on reasonable approximations produced an
estimate of 〈r1 · rk〉/〈r2〉 that was in excellent agreement with
the exact values. These approximations implied that the re-
duced collisional series (32) formed a geometric series (or, in
other words, that 〈r1 · rk〉 decays exponentially), which led to
the simple (and very accurate) expression given in Eq. (6).
Here, we will extend this approximation to granular gases,
recovering the results of Ref. [8] in the elastic limit.

Therefore, we need to evaluate the terms 2〈r1 · rk〉/〈r2〉 for
k � 1. To do this, we will follow similar steps to those used in
Ref. [8] when collisions are elastic. We start by assuming that
the lengths of the first step, r1, and the kth step, rk , along with
the angle θ1,k between r1 and rk , are mostly uncorrelated. This
leads to

2〈r1 · rk〉
〈r2〉 = 2〈r1rk cos θ1,k〉

〈r2〉

≈ 2〈r1〉〈rk〉〈cos θ1,k〉
〈r2〉 = 2〈r〉2〈cos θ1,k〉

〈r2〉 . (38)

Note that 〈r1〉 ≡ 〈r〉 is the mean free path of the intruder,
which we will also denote by �0. A simple approximation for
〈r2〉 is 〈r2〉 ≈ 2�2

0 (see Sec. VII). Thus, Eq. (38) becomes

2〈r1 · rk〉
〈r2〉 ≈ 〈cos θ1,k〉. (39)

The angles θ1,k , θ1,2, and θ2,k are related by the spherical
cosine law:

cos θ1,k = cos θ1,2 cos θk−1,k + sin θ1,2 sin θk−1,k cos ϕ1,2,k,

(40)
where ϕ1,2,k is the angle between the plane generated by the
vectors r1 and r2, and the plane generated by the vectors r2

and rk . Due to the rotational symmetry of collisions along
the direction of the precollisional displacement r1 (or veloc-
ity v1), all values of ϕ1,2,k are equally probable. Therefore
〈sin θ1,2 sin θ2,k cos ϕ1,2,k〉 = 0, and

〈cos θ1k〉 = 〈cos θ1,2 cos θ2,k〉. (41)

Neglecting correlations between successive scattering angles,
we find that

〈cos θ1k〉 ≈ 〈cos θ1,2〉〈cos θ2,k〉. (42)

Repeating this procedure for 〈cos θ2,k〉, then for 〈cos θ3,k〉, and
so on, we find that

〈cos θ1k〉 ≈
k−1∏
i=1

〈cos θi,i+1〉, k � 2. (43)

Although the granular temperature decreases in time due to
the inelastic character of collisions, 〈cos θi,i+1〉 is independent
of i (i.e., it does not depend on time) because the scattering an-
gle in a collision depends on the normal restitution coefficient,
not the speed of the colliding particles. Therefore,

〈cos θ1k〉 ≈ 〈cos θ1,2〉k−1. (44)

Note that all the arguments shown so far are analogous to
those for molecular gases [8].
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We now relate the computation of 〈cos θ1,2〉 to the mean-
persistence ratio 〈ω〉. This quantity is usually defined in
kinetic gas theory as (see Sec. 5.5 of Chap. 5 of Ref. [9], for
example):

〈ω〉 =
〈
v2

v1
cos θ1,2

〉
. (45)

To connect 〈cos θ1,2〉 with 〈ω〉 we write

〈cos θ1,2〉 =
〈
v1

v2

v2

v1
cos θ1,2

〉
≈

〈
v1

v2

〉 〈
v2

v1
cos θ1,2

〉
≡ �,

(46)

where

� =
〈
v1

v2

〉
〈ω〉. (47)

For the approximation in Eq. (46) to hold, we assumed that
the fluctuations of cos θ12 and v1/v2 around their mean values
are small (with the mean value of v1/v2 close to 1) and that
cos θ12 and v1/v2 are weakly correlated. We will refer to �

as perseverance. It is closely related to the collision mean-
persistence ratio 〈ω〉 and equal to it when 〈v1/v2〉 = 1 (elastic
collisions).

Combining Eqs. (39), (44), and (46), we find [see
Eq. (33b)]

ck ≡ 2〈r1 · rk〉
〈r2〉 ≈ �k−1 (48)

for k � 2 (recall that c1 ≡ 1). This is one of the key results of
the present article. Substituting this result into Eq. (28) yields

〈
R2

N

〉 ≈ 〈r2〉
N−1∑
k=0

(N − k)�k = 〈r2〉
1 − �

[
N − �(1 − �N )

1 − �

]
.

(49)
For large N , 〈

R2
N

〉 ≈ 〈r2〉
1 − �

N, (50)

or, in terms of the time,

〈R2(t )〉 = 〈N (t )〉 〈r2〉
1 − �

. (51)

In terms of the effective free path, this relation is equivalent to

�2
e

〈r2〉 = 〈R2〉
〈N〉〈r2〉 ≈ 1

1 − �
. (52)

Equation (51) [or Eq. (52)] is a fundamental equation in
this work. It tells us how the MSD of the tracer (or intruder)
particle differs from that of a particle scattered by collisions
with equiprobable spatial re-emission. The “elementary” re-
lation 〈R2〉 = 〈N〉〈r2〉 (equivalent to setting � = 0) would
apply in that case. Equation (51) shows us that the particle’s
persistence in maintaining its direction after collisions results
in a positively correlated random walk, resulting in an actual
MSD exceeding that without persistence.

A. Smoluchowski and Jeans

The stochastic, random walk procedure, where we follow
the particle of interest (intruder) and treat each collision as a

random event, comes from Smoluchowski, a pioneer in what
we now call stochastic processes. This is the approach we
have used here. Although there are some differences between
our method and the method of Smoluchowski, there are also
strong similarities (see Sec. 11 of Ref. [2]). Smoluchowski
assumed a constant scattering angle θ (which he denotes as ε),
and a fixed free path length l (l ≡ r1 = r2 = . . . = const.). A
recurrence relation between 〈R2

N 〉 and 〈R2
N−1〉 was then found,

yielding exactly Eq. (51) for large N , if we equate � with cos ε

and 〈r2〉 with 2l2.
However, Jeans knew (see Sec. 168 of Ref. [6]) that col-

lision persistence had to be considered for a more accurate
description of molecular diffusion in gases. Smoluchowski
was also aware of this: see Sec. 7 of Ref. [1], where Jeans’
article [5] is referenced. Taking collision persistence into ac-
count, Jeans suggested the improved formula D = DeKT/(1 −
ω) (for elastic collisions only), identifying ω as the mean-
persistence ratio. However, Jeans did not connect his formula
with Smoluchowski’s, i.e., the parameter ω (which he denotes
as θ ) is an estimate of Smoluchowski’s cos ε.

Based on the preceding discussion, it might be appropriate
to refer to our Eq. (51) as the inelastic Smoluchowski-Jeans
equation.

B. Connection to polymer physics

The trajectory of a particle (the intruder) after N collisions,
{r1, r2, . . . , rN }, can be viewed as a polymer configuration
with N + 1 monomers, where ri is the vector connecting
monomer i to i − 1 (monomers are placed at intruder collision
points). From this viewpoint, readers familiar with polymer
physics will recognize our effective free path �e, defined by
Eq. (29), as the Kuhn length [29]. Furthermore, if we identify
〈r2〉 with the square of the bond length, then 〈R2〉/(N〈r2〉) [see
Eq.(32)] is the Flory characteristic ratio in polymer physics.

From Eq. (48), we learn that the correlation between colli-
sions decay exponentially:

〈r1 · r1+n〉 ∼ �n = exp(n ln �) = exp(−n/ñ), (53)

where

ñ = −1/ ln � (54)

are the persistence collisions. Borrowing the terminology em-
ployed to define persistence length in polymers (see Ref. [30],
Sec. 2.3), persistence collisions ñ can roughly be considered as
the maximun number of collisions that the intruder can have
while its trajectory {r1, r2, . . . , rñ} remains roughly straight;
at greater number of collisions, the bending of the rk con-
nections destroy the memory of the trajectory direction. A
more detailed discussion on persistence collisions for elastic
collisions is given at the end of Sec. IV of Ref. [8].

C. MSD regimes with respec to N and time

Although this article primarily focus on intruder diffusion
in the long-time (or high number of collisions) regime [where
Eqs. (50) and (51) hold], in this subsection we provide a brief
qualitative overview of the MSD for other time regimes.
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1. Scaling of the MSD with the number of collisions

In Sec. IV B, we established that the trajectory approxi-
mates a straight line when the number of collisions N is less
than or of the order of the persistence collisions ñ. Conse-
quently, for N � ñ, the displacement R scales linearly with
N , leading to 〈R2〉 ∼ N2. This outcome can also be deduced
directly from Eq. (49): the condition for a quasiballistic tra-
jectory over a substantial number of collisions requires �

approaching unity, as then ñ = −1/ ln � ≈ 1/(1 − �) be-
comes relatively large. In this case, Eq. (49) becomes〈

R2
N

〉
〈r2〉 = N + N2

2
+ N − N3

6
(1 − �) + O(1 − �)2. (55)

This equation tell us that the MSD is ballistic, i.e., 〈R2
N 〉 grows

as N2, for 1 
 N 
 ñ. This ballistic regime ceases when the
N2 term approaches the magnitude of the N3(1 − �) term, a
condition satisfied when N ≈ 1/(1 − �) ≈ ñ. Consequently,
for N � ñ, the ballistic displacement regime vanishes (as the
bending of the rk connections disrupts trajectory direction
memory), and the diffusive regime, 〈R2

N 〉 ∼ N , as described
by Eq. (50), is established.

2. Scaling of the the average number of collisions with time

From Eq. (22), it is easy to see that s0 ∼ ln(t/tζ ) for t � tζ
while s0 ∼ t/τ0(0) for t 
 tζ . The physical meaning of this
expression is clear. Equation (14) shows that the intruder’s
temperature (i.e., its velocity) changes negligibly for t 
 tζ .
This occurs because energy loss from collisions with gas
particles is minimal in this regime, keeping the intruder’s
velocity close to its initial value. Therefore, the number of
collisions s0(t ) is simply the time over the mean collision
time: t/τ0(0). At times much greater than tζ , the intruder’s
velocity and collision frequency have changed substantially
from their initial values and both decay as tζ /t . This results in
a logarithmic growth s0 ∼ ln(t/tζ ) of the number of collisions
for t � tζ .

3. Scaling of the MSD with time

To determine the detailed time dependence of the MSD
for all times we should use Eq. (49) together with Eq. (36).
However, a simpler analysis is sufficient for our purpose of
determining the scaling of the MSD with time. Thus, we
assume that the number of collisions N up to a given t is
similar to its mean value, N ≈ 〈N〉 ≡ s0(t ) (i.e., we assume
that the variance of N is small). This is equivalent to the
approximation ξN (t ) ≈ δ(N − s0(t )) in Eq. (36), where δ is
the Dirac delta. In other words, to estimate the MSD for all
times we will use the relationship

〈R2(t )〉 ≈ 〈
R2

N=s0(t )

〉
, (56)

with 〈R2
N 〉 given by Eq. (49).

Obviously, for times less than or comparable to the mean
collision time τ0(0), i.e., before the first collision, the trajec-
tory of the intruder is straight, and thus 〈R2(t )〉 ∼ t2. We will
call this (trivial) temporal regime the precollisional regime.
But we know that, due to the persistence of the collisions, the
trajectory of the intruder remains roughly straight beyond the
first collision for ñ collisions, i.e., until times of order of tñ

where s0(tñ) = ñ. Thus, beyond the precollisional regime, we
distinguish three temporal regimes depending on the values of
tñ and tζ :

(1) Early time regime or ballistic regime. τ0(0) 
 t 

min{tñ, tζ }. In this case, (i) the movement of the intruder is
roughly straight, 〈R2〉 ∼ s2

0, because t 
 tñ and (ii) s0(t ) ∼
t because t 
 tζ . These two facts imply ballistic motion,
〈R2〉 ∼ s2

0 ∼ t2.
(2) Intermediate time regime. We distinguish two cases:

(a) tñ 
 t 
 tζ . Here the motion of the intruder is dif-
fusive in the number of collisions, 〈R2〉 ∼ s0, because tñ 

t . Since s0(t ) ∼ t because t 
 tζ , this implies 〈R2〉 ∼ s0 ∼
t , i.e., normal diffusive behavior. Note that this interme-
diate normal diffusive regime becomes the final diffusive
regime for elastic collisions because, in this case, tζ → ∞
[see Eq. (23)]. This normal diffusive regime has been stud-
ied in detail using our random walk approach in Ref. [8].

(b) tζ 
 t 
 tñ. Here the motion of the intruder is bal-
listic with respect to the number of collisions, 〈R2〉 ∼ s2

0,
because t 
 tñ. However, s0(t ) ∼ ln t when tζ 
 t . Thus,
〈R2〉 ∼ s2

0 ∼ ln2 t . Note that tζ 
 tñ holds when α is not
close to 1 [see Eq. (23)] and � is very close to 1 [see
Eq. (54)]. In Sec. V we will show that � becomes closer to
1 as m0/m increases and σ0/σ decreases.
(3) Long-time regime. max{tñ, tζ } 
 t . Here, again, the

motion is diffusive with respect to the number of collisions,
〈R2〉 ∼ s0, because tñ 
 t . But now the number of collisions
decays logarithmically, s0 ∼ ln t , because tζ 
 t . This implies
〈R2〉 ∼ s0 ∼ ln t , which is a subdiffusive behavior (sometimes
termed ultraslow as the MSD grows slower than any power of
time).

The intermediate regime can not be detected when tñ and
tζ are similar. Furthermore, if these times are not much larger
than τ0(0), the time dependence of the MSD does not exhibit
the well-defined functional forms of the first two regimes, and
only the long time subdiffusive regime is clearly observable
(aside from the precollisional regime at very short times).
This long-time temporal regime is the main subject of this
article, and it is the regime to which Eqs. (50) and (51) ap-
ply. In Refs. [31–33], Bodrova et al. considered the all-time
temporal evolution of the MSD for an intruder in a granular
gas in the HCS state (and also in granular gas mixtures). They
provided an equation for the MSD at any instant and described
two temporal regimes: ballistic for t 
 tζ and subdiffusive
(logarithmic, ultraslow) for tζ 
 t , although no intermediate
temporal regime was identified.

Although the mechanisms and regimes identified differ, the
presence of various regimes in the MSD has been previously
observed in MD simulations of freely cooling viscoelastic
grains [34] and confined granular gases [35].

V. PERSEVERANCE FOR INELASTIC HARD SPHERES

Our main formula (51), or (52), tells us that collision per-
sistence modifies the MSD of a particle by a factor 1/(1 −
�) relative to the MSD without persistence. To make this
equation useful, we need to determine the perseverance � =
〈v1/v2〉〈ω〉 in terms of the parameter space of the system
(intruder immersed in a granular gas in the HCS). Since
the mean-persistence ratio 〈ω〉 is a dimensionless quantity, it
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should be a function of the mass m0/m and diameter σ0/σ

ratios and the coefficients of restitution α and α0. In the
following two subsections, we will provide expressions for
the mean-persistence ratio 〈ω〉 and the average pre- to post-
collisional intruder velocity ratio, 〈v1/v2〉, for this system.

A. Mean-persistence ratio for inelastic hard spheres collisions

The mean-persistence ratio for elastic hard sphere colli-
sions has been exactly calculated in Sec. 5.5 of Ref. [9].
However, for inelastic collisions, the evaluation of 〈ω〉 re-
quires to take some approximations since the exact form of
the velocity distributions of the intruder f0 and granular gas
particles f are not known to date [11]. As usual, to estimate
〈ω〉 for inelastic hard spheres we take Maxwellian distribu-
tions defined at their corresponding temperatures for f0 and
f . Some technical details on this calculation are provided
in the Appendix A. The final expression of 〈ω〉 for a three-
dimensional system (d = 3) is

〈ω〉 = 1 − 1

2

1 + α0

1 + m0/m
[1 − ω̃(β )], (57)

with

ω̃(x) = x

2

[
x√

1 + x
ln

(
1 + √

1 + x√
x

)
− 1

]
. (58)

Note that the dependence of 〈ω〉 on the restitution coefficient
α of the granular gas comes from the dependence of β on α

[recall Eq. (11)]. If we set α = α0 = 1, then T0/T = 1 and
β = m/m0, so that we get back the standard result for elastic
hard spheres [9].

B. Average pre- to postcollisional intruder velocity ratio

We now evaluate the average 〈v1/v2〉, where v1 and v2

are the modulus of the pre- and postcollisional velocities of
the intruder. Given that this calculation is quite intricate, we
approximate this as 〈

v1

v2

〉
≈ v̄0(t )

v̄0(t + τ0)
, (59)

where τ0(t ) = 1/ν0(t ) is the mean time between two succes-
sive collisions of the intruder with the gas particles, and v̄0(t )
denotes the average speed modulus of the intruder at time t .

To estimate v̄0(t ), we consider the time evolution of the in-
truder’s temperature T0(t ). From Eqs. (8) and (10) one realizes
that

∂t ln T0 = −ζ (t ). (60)

Because T0 ∝ v̄2
0 , Eq. (60) implies

d v̄0

dt
= −1

2
ζ (t )v̄0. (61)

So, if we integrate Eq. (61) between t and t + τ0, we get

v̄0(t + τ0) − v̄0(t ) = −
∫ t+τ0

t

ζ (t ′)
2

v̄0(t ′)dt ′

= − ζ (t )τ0(t )

4
[v̄0(t + τ0) + v̄0(t )]. (62)

In the last expression, we (i) have assumed that the cooling
rate ζ (t ) does not change much during the microscopic time
interval τ0 and, so, it can be considered constant in the in-
tegral, and (ii) we have approximated the remaining integral
using the trapezoidal rule. From Eq. (62) we find

v̄0(t )

v̄0(t + τ0)
= 1 + ζ τ0/4

1 − ζ τ0/4
. (63)

Since ζ (t ) ∝ T (t )1/2 and τ0(t ) = ν0(t )−1 ∝ T (t )−1/2, it turns
out that ζ (t )τ0(t ) = ζ (t )/ν0(t ) does not depend on time. Thus,
from Eq. (17) one achieves the expression

ζ (t )τ0(t ) = 1 − α2

dϒ
, (64)

where use has been made of the result [25]

ζ (t )τ (t ) = 1 − α2

d
. (65)

Inserting Eq. (64) into Eq. (63), and taking into account
Eq. (59), we find 〈

v1

v2

〉
≈ 4dϒ − α2 + 1

4dϒ + α2 − 1
. (66)

Finally, from Eqs. (47), (57), and (66), we obtain the following
approximated expression for the perseverance �:

� = 4dϒ + 1 − α2

4dϒ − 1 + α2

{
1 − 1

2

1 + α0

1 + m0/m

[
1 − ω̃(β )

]}
. (67)

This equation, along with Eq. (48) [and then Eqs. (49) and
(51)], is likely the main result of the present work.

Equation (62) was obtained by approximating the integral
using the trapezoidal rule. One might wonder how our esti-
mates for the velocity ratio, Eq. (63), and consequently � in
Eq. (67), would change if we had used a different approxi-
mation for the integral, such as the rectangle rule, instead of
the trapezoidal rule. One expects the difference between using
one rule or the other to be small because τ0 is, in general,
small. This is indeed what happens, as shown in Appendix B.
In any case, the trapezoidal rule is generally more accurate
than rectangular rules, and it is the one we have chosen to use
in this paper.

VI. DEPENDENCE OF 〈r1 · rk〉 ON k AND MSD IN UNITS
OF 〈r2〉: COMPARISON WITH SIMULATIONS

In Sec. IV, we derived the key result (48), showing that
〈r1 · rk〉 is proportional to �k−1. This makes the reduced col-
lisional series (32) a geometric series with ratio �. From this,
we got our main result: Eqs. (51) and (67) for the MSD of the
intruder. Now, we want to assess the accuracy of these the-
oretical predictions. In this section we consider the diffusion
of an intruder in a 3D granular gas. We will test the validity
of Eqs. (48) and (51), and our expression for �, Eq. (67),
comparing them with DSMC results.
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TABLE I. DSMC values of the first four ratios ck+1/ck (k = 1, 2, 3, 4) of the reduced collisional series (32) for several values of α, α0,
m0/m, and σ0/σ . The last column shows � from Eq. (67). Simulation values and standard errors are rounded to the nearest thousandth. A
standard error less than 5 × 10−4 is denoted by (0).

α α0
m0
m

σ0
σ

c2/c1 c3/c2 c4/c3 c5/c4 �

0.4 0.4 1.0 1.0 0.683(0) 0.683(1) 0.683(2) 0.684(2) 0.6720
0.6 0.6 1.0 1.0 0.591(0) 0.595(1) 0.597(2) 0.598(3) 0.5838
0.8 0.8 1.0 1.0 0.500(0) 0.506(1) 0.510(2) 0.513(3) 0.4940
1.0 1.0 1.0 1.0 0.413(0) 0.421(1) 0.425(2) 0.428(5) 0.4058

0.4 0.4 2.0 1.0 0.842(0) 0.840(1) 0.840(1) 0.839(1) 0.8331
0.6 0.6 2.0 1.0 0.767(0) 0.767(1) 0.766(1) 0.766(2) 0.7585
0.8 0.8 2.0 1.0 0.681(0) 0.683(1) 0.684(1) 0.684(2) 0.6749
1.0 1.0 2.0 1.0 0.591(0) 0.596(1) 0.598(1) 0.599(2) 0.5868

0.4 0.4 0.5 1.0 0.527(0) 0.533(1) 0.536(2) 0.538(3) 0.5209
0.6 0.6 0.5 1.0 0.428(0) 0.436(1) 0.442(2) 0.446(4) 0.4241
0.8 0.8 0.5 1.0 0.337(0) 0.346(1) 0.352(3) 0.356(8) 0.3313
1.0 1.0 0.5 1.0 0.256(0) 0.262(1) 0.268(4) 0.274(16) 0.2447

0.4 0.4 1.0 2.0 0.624(0) 0.627(1) 0.627(2) 0.629(2) 0.6143
0.6 0.6 1.0 2.0 0.551(1) 0.556(1) 0.558(1) 0.560(2) 0.5439
0.8 0.8 1.0 2.0 0.480(0) 0.487(1) 0.491(2) 0.493(4) 0.4740
1.0 1.0 1.0 2.0 0.413(0) 0.421(1) 0.425(2) 0.429(4) 0.4058

0.4 0.4 1.0 0.5 0.748(0) 0.746(1) 0.746(1) 0.745(1) 0.7420
0.6 0.6 1.0 0.5 0.641(0) 0.643(1) 0.644(1) 0.645(2) 0.6371
0.8 0.8 1.0 0.5 0.527(1) 0.533(1) 0.536(1) 0.540(3) 0.5220
1.0 1.0 1.0 0.5 0.413(0) 0.421(1) 0.425(2) 0.429(3) 0.4058

0.4 0.7 1.0 1.0 0.581(0) 0.585(1) 0.586(1) 0.588(2) 0.5735
0.6 0.7 1.0 1.0 0.559(0) 0.564(1) 0.567(1) 0.569(2) 0.5526
0.8 0.7 1.0 1.0 0.529(0) 0.534(1) 0.538(2) 0.540(3) 0.5229
1.0 0.7 1.0 1.0 0.491(0) 0.498(0) 0.501(2) 0.504(3) 0.4849

A. Dependence of 〈r1 · rk〉 on k

From the definitions of ck in Eq. (33), we see that studying
the k-dependence of 〈r1 · rk〉 is equivalent to studying the k-
dependence of ck . Equation (48) implies

ck+1

ck
≈ �, ∀k, (68)

i.e., ck+1/ck ≈ � for all k. To validate these relations, we will
compare the theoretical expression of � [given by Eq. (67)]
with the numerical values of ck+1/ck obtained by means of
the DSMC method [24] for inelastic hard spheres (implemen-
tation details of this method are provided in the Appendix C).

Given that the parameter space of our system (constituted
by the parameters α0, α, m0/m, σ0/σ , and the reduced density
nσ 3) is quite large, a full comparison between theory and sim-
ulations exceeds the scope of this article. For this reason, we
will compare results for a limited set of representative cases.
Additionally, we consider the low-density regime (nσ 3 → 0),
and hence the pair correlation functions are χ = χ0 = 1.

In Table I, simulation results are presented for the initial
four values of ck+1/ck for 24 cases with different masses,
sizes, and normal restitution coefficients. The agreement be-
tween simulation and theory is excellent: simulated values
for k = 1, 2, 3, and 4 closely match the theoretical values
of � obtained from Eq. (67); differences are rarely above a
couple of hundredths and usually much smaller. This is espe-
cially true for c2/c1, where the difference from the theoretical
� is always less than one hundredth. This is of significant
relevance given that the first two terms in the reduced

collisional series are the most important (especially as �

decreases).
Figure 1 further compares simulated ck+1/ck values for

k = 1, 2, 3, and 4 with the theoretical values of � for
additional cases. The figure shows that the agreement be-
tween simulation and � worsens as k increases, though this
effect diminishes with increasing the mass ratio m0/m. For
m0/m � 2, simulation symbols for different k values are
barely distinguishable. For a given value of k, ck+1/ck in-
creases with m0/m, indicating that the correlation between the
initial displacement r1 and the kth displacement rk decreases
more slowly when m0/m gets bigger. This makes sense: if
the intruder is much heavier than the granular gas particles,
collisions will hardly perturb the intruder’s trajectory, so the
direction after k collisions (if k is not too large) will remain
close to the initial r1. This effect becomes stronger as the
collisions become more inelastic (as α0 = α becomes smaller)
because the normal component of the relative velocity along
the line of separation between the centers of the colliding
sphere decreases. In other words, inelastic particles bounce
less than elastic ones, so they tend to keep going in the same
direction as before the collision (this effect can be seen in the
animations of Ref. [36]).

In Fig. 2, we also compare simulated ck+1/ck values for
k = 1, 2, 3, and 4 with the theoretical � for three mass ratios
(m0/m = 6, 2, and 1), and three size ratios (σ0/σ = 1/2, 1,
and 2). Here, the simulation values obtained from the DSMC
method again agree well with the theoretical prediction for
�. We see that for given values of the mass ratio m0/m and
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FIG. 1. DSMC values of the first ratios ck+1/ck of the re-
duced collisional series vs the (common) coefficient of restitution
α = α0 for k = 1, 2, 3, 4 (circles, squares, up triangles, down
triangles, respectively) and, for from top to bottom, m0/m =
8, 6, 4, 2, 1, 1/2, 1/8 with σ0/σ = 1. Here, and in the rest of the
figures, the absence of error bars indicates that the standard error
is smaller than the size of the symbols. Due to large statistical errors,
especially at α = 0.9 and 1, we have not included simulation data
for c5/c4 when m0/m = 1/8. The error bars shown for m0/m = 1/8
correspond to the uncertainty in c4/c3. The solid lines represent �

defined by Eq. (67).

the (common) coefficient of restitution (α = α0), � ∼ 〈r1 ·
r1+k〉1/k increases when σ0/σ decreases, meaning collision
correlation decreases more slowly when σ0/σ is smaller. This,
along with the m0/m dependence we find in Fig. 2, shows
that collision correlations decrease more slowly (� is larger)
when m0/m is higher, σ0/σ is lower, and collisions are more
inelastic.

Figures 1 and 2 show that the dependence of ck+1/ck on
the coefficients of restitution is approximately linear, provided

FIG. 2. DSMC values of ck+1/ck vs the (common) coeffi-
cient of restitution α = α0 for k = 1, 2, 3, 4 (circles, squares, up
triangles, down triangles, respectively) and, for from top to bot-
tom, {m0/m, σ0/σ } = {6, 1/2}, {6, 1}, {6, 2}, {2, 1/2}, {2, 1}, {2, 2},
{1, 1/2}, {1, 1}, and {1, 2}. The solid lines represent � defined by
Eq. (67). The {blue, black, red} color is used for σ0/σ = {1/2, 1, 2}.

FIG. 3. DSMC values of ck+1/ck vs α0 with α = 0.7 for k =
1, 2, 3, 4 (circles, squares, up triangles, down triangles, respectively)
and, for from top to bottom, {m0/m, σ0/σ } = {6, 1}, {2, 1}, {1, 1/2},
{1, 1}, {1, 2}, and {1/2, 1} The solid lines represent � defined by
Eq. (67). The {blue, black, red} color is used for σ0/σ = {1/2, 1, 2}.

m0/m is not too large and σ0/σ is not too small. We also
notice that curves for different m0/m values but the same
σ0/σ are roughly parallel. However, when m0/m is large and
σ0/σ is small, the lines curve and tend to run parallel to
the line ck+1/ck = 1. This nonlinear behavior is evident in
the case m0/m = 6, especially when σ0/σ = 1/2. This case
also shows that when α0 � 0.55, the simulated ck+1/ck values
are so close to 1 that � becomes unphysical, exceeding 1.
This leads to unphysical (negative) MSD values according to
Eq. (51). However, Eq. (51) correctly predicts a very large
MSD when ck+1/ck values are close to 1, due to slow con-
vergence of the reduced collisional series. This makes sense
physically, as an intruder with � ≈ 1 acts like a quasiballistic
particle for many collisions. Remember [from Eq. (54)] that
the persistence collisions (the maximum number of collisions
for which the trajectory can be considered ballistic) are given
by ñ = −1/ ln �.

Finally, Fig. 3 shows ck+1/ck versus α0 for a fixed value of
α (α = 0.7) and several values of the mass m0/m and diameter
σ0/σ ratios. The results are very similar to those found when
a common coefficient of restitution is considered (α = α0).

B. MSD in units of 〈r2〉
In this section, we will focus on validating our random

walk method by analyzing the MSD in the long-time regime
(where N is very large). We will not analyze the MSD for the
other time regimes described in Sec. IV C 3.

Since the simulated ck+1/ck values (especially for k = 1)
match the theoretical � well, we expect the theoretical MSD
formula (52) [which comes from Eq. (48)] to be very accurate
too. This is confirmed in Fig. 4 where the ratio 〈R2〉/(〈N〉〈r2〉)
is plotted versus the (common) coefficient of restitution α =
α0. It is quite apparent that the MSD per collision in 〈r2〉
units is very well described by the ratio 1/(1 − �).To com-
plement Fig. 4, Fig. 5 shows 〈R2〉/(〈N〉〈r2〉) as a function of
the coefficient of restitution α0 characterizing the inelasticity
of intruder-grains collisions for a given value of α (α = 0.7).

015420-10



PARTICLES, TRAJECTORIES, AND DIFFUSION: … PHYSICAL REVIEW E 113, 015420 (2026)

FIG. 4. DSMC values of 〈R2〉/(〈N〉〈r2〉) vs the (common) coeffi-
cient of restitution (α = α0) for, from top to bottom, {m0/m, σ0/σ } =
{2, 1} (squares), {1, 1/2} (stars), {1, 1} (down triangles), {1, 2} (up
triangles), and {1/2, 1} (circles). The solid lines represent the func-
tion 1/(1 − �), where � is given by Eq. (67).

Even though we saw good agreement between theory and
simulations for the reduced collisional series in Table I and
Figs. 1–3, the agreement for the MSD between theory and
simulation in Figs. 4 and 5 is very impressive. In fact, the
agreement is so surprisingly good that one could speculate that
the origin of this agreement could be a possible cancellation
or compensation of the approximations leading to Eqs. (51)
and (67). Regardless, our MSD results are quite robust, as we
have shown in this section and we will see again in Sec. VII.

C. Cancellation of errors

As shown in Sec. VI and as will be seen again in Sec. VII,
our random walk approach leads to remarkably accurate re-
sults. In fact, the agreement with simulation results is so
surprisingly good that one might reasonably speculate that the
origin of this agreement may lie in a cancellation or compen-

FIG. 5. DSMC values of 〈R2〉/(〈N〉〈r2〉) vs α0 with α = 0.7 and
{m0/m, σ0/σ } = {2, 1} (squares), {1, 1/2} (stars), {1, 1} (down tri-
angles), {1, 2} (up triangles), and {1/2, 1} (circles). The solid lines
represent the function 1/(1 − �), with � given by Eq. (67).

FIG. 6. Simulation results of 〈v1/v2〉 (filled symbols) and
〈v1〉/〈v2〉 (open symbols) vs the (common) coefficient of restitution
α = α0 for {m0/m, σ0/σ } = {2, 1} (squares), {1, 1/2} (stars), {1, 1}
(down triangles), {1, 2} (up triangles), and {1/2, 1} (circles). The
solid lines represent the theoretical estimation of 〈v1〉/〈v2〉 given by
the right-hand side of Eq. (66).

sation of errors stemming from the various approximations
leading to Eqs. (51), (48), and (67).

This fortunate cancellation of errors, leading to unexpect-
edly accurate predictions, is a well-known phenomenon in
science in general and in the statistical physics of gases
and liquids in particular. To cite just a couple of examples
among many: in liquids, the Percus–Yevick approximation
outperforms the hypernetted-chain approximation for strongly
repulsive and short-ranged potentials, despite retaining fewer
diagrams in the diagrammatic expansion [37]. Another ex-
ample is found in kinetic theory: replacing the intricate
Boltzmann collision operator by the drastic Bhatnagar–
Gross–Krook (BGK) approximation often yields remarkably
accurate results even for far-from-equilibrium states. For in-
stance, in the case of the uniform shear flow state, the BGK
predictions of the shear-rate dependence of the rheological
properties of the dilute gas compare quite well with computer
simulations [38].

It turns out that our random walk method belongs to the
class of theories containing compensating approximations that
leads to better-than-expected results. The data presented in
Fig. 6 justify this claim. This figure displays simulation results
of 〈v1/v2〉 and 〈v1〉/〈v2〉, as well as the theoretical approx-
imation to 〈v1/v2〉 given by Eq. (66). Thus, it serves as a
test of Eq. (66). We see that the percentage error of this
approximation is curiously stable, typically on the order of
13% (sometimes smaller). In any case, this error is clearly
larger than that observed in Figs. 1–5. Therefore, we may
conclude that the errors arising from the approximations in
Secs. III and IV (which can be identified by the symbol ≈
in the equations)—and specifically those in Eqs. (39), (42),
(44), (46), and (66)—cancel each other out, leading to final
global approximations of our quantities of interest given by
Eqs. (48), (50) [or (51)], and (67) that are much better than
one might initially expect.
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Finally, it is worth noting in Fig. 6 how accurately our
estimate of v̄0(t )/v̄0(t + τ0), given by the right-hand side of
Eq. (66), reproduces the simulation values of 〈v1〉/〈v2〉.

VII. COMPARISON WITH THE BOLTZMANN
THEORETICAL RESULTS

It is natural to wonder if the theoretical results derived in
this paper for the MSD of an intruder immersed in a granular
gas in HCS [Eqs. (52) and (67)] are comparable, worse, or
better than those previously obtained in the granular litera-
ture by solving the inelastic version of the Boltzmann kinetic
equation by means of the Chapman–Enskog method [9]. As
usual in kinetic theory, given that the (time-dependent) tracer
diffusion coefficient D(t ) = 〈R2〉/2dt is given in terms of the
solution of a linear integral equation, an explicit expression of
D(t ) is obtained by considering the first few terms in a Sonine
polynomial expansion. If only the leading term in the series
expansion is considered, then the corresponding expression of
D(t ) is referred to as the first-Sonine approximation. If one
considers two terms in the series expansion, then one gets
the second-Sonine approximation to the diffusion coefficient.
Both Sonine approximations were obtained in Ref. [22] for
low-density three-dimensional granular gases and in Ref. [23]
for d-dimensional granular gases at moderate densities.

The relationship between the diffusion coefficient D(t ) and
the effective free path �2

e = 〈R2〉/〈N〉 is [25]

�2
e = 2dD̃ϒβ �2

0,M = 2dD̃

ϒ
�2

M , (69)

where D̃ is the dimensionless diffusion coefficient defined by

D(t ) = 2

[



(
d+1

2

)



(
d
2

) ]2
T (t )

mν(t )
D̃. (70)

Recall that �M ≡ v̄(t )/ν(t ) and �0,M ≡ v̄0(t )/ν0(t ) are the
Maxwell mean free paths for the gas particles and intruder,
respectively. Furthermore, note that Eq. (26) has been used to
get the rightmost equation. The first- and second-Sonine ap-
proximations of the coefficient D̃ are given in the Appendix C
for the sake of completeness.

The Maxwell mean free paths may not be the same as the
mean free paths �0 and �, which are defined by the average
distances traveled by a particle between collisions. However,
for elastic hard spheres, �0 = �0,M and � = �M [28]. Simu-
lations confirm these relations also hold for inelastic hard
spheres. Therefore, we will use �0 and � to denote �0,M and �M ,
respectively, from now on. Thus, in terms of the dimensionless
diffusion coefficient D̃, the effective free path �e is [25]

�2
e = 2dD̃ϒβ �2

0 = 2dD̃

ϒ
�2, (71)

where the explicit dependence of D̃ on the parameter space
of the system depends on the specific Sonine approximation
considered. Note that from the relationships �0 = �0M , � =
�M , �0M = �M/(ϒ

√
β ) [the latter expression being implicit in

Eq. (69)] combined with the time-independence of �M [see
Eq. (25)], and the time-independence of ϒ and β, implies
that the free-paths of both the tracer and gas particles are time
independent.

FIG. 7. Ratio of effective mean free path to intruder mean free
path, �e/�0, as a function of the (common) coefficient of restitution
α = α0 for an intruder with σ0/σ = 1 and, from top to bottom,
m0/m = 2 (blue), m0/m = 1 (black), and m0/m = 1/2 (red). Sym-
bols represent DSMC results, the solid lines correspond to the
random walk results given by Eq. (72), and the short-dashed and
dashed lines refer to the results obtained from the first- and second-
Sonine approximations, respectively.

Equation (71) provides the effective free path according to
kinetic theory. The effective free path �e obtained with our
random walk approach is [see Eq. (52)]

�2
e = 2κ

1 − �
�2

0 = 2κ

(1 − �)ϒ2 β
�2. (72)

Here,

κ ≡ 〈r2〉
2�2

0

. (73)

The problem we face when comparing the kinetic theory result
(71) with the random walk result (72) is that the relationship
between 〈r2〉 and 〈r〉 ≡ �0 is unknown (that is, κ is unknown).
For elastic collisions, both the free path distribution r and the
ratio κ can be expressed as integrals that can be easily eval-
uated numerically [8]. Additionally, asymptotics expressions
for the free path distribution in certain limits are known. In the
case of elastic collisions, κ depends solely on the mass ratio
m0/m and takes values close to 1 (see Fig. 2 of Ref. [8]). For
instance, κ � 1.0506 for m0/m = 1. However, for granular
gases in HCS, no expressions for the free path distribution and
κ are known. Therefore, to offer a clean comparison between
the kinetic theory and the random walk results derived here,
we resort to estimate κ from our numerical simulations.

Figures 7 and 8 compare simulation results for �e (nor-
malized by the mean free path �0) with those obtained from
the theoretical results obtained from both (i) the first- and
second-Sonine approximations, and (ii) the random walk ap-
proximation. Figure 7 shows results for three different mass
ratios (intruder mass greater than, equal to, and less than the
mass of the granular gas particles) and a common diameter
for intruder and gas particles (σ0 = σ ). We observe that the
results from all three approximations are quite good. While
the first-Sonine approximation clearly gives the worst results,
the predictions of the second-Sonine approximation and our
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FIG. 8. Ratio of effective mean free path to intruder mean free
path, �e/�0, as a function of α = α0 for an intruder with m0/m =
1 and, from top to bottom, σ0/σ = 1/2 (blue), σ0/σ = 1 (black),
and σ0/σ = 2 (red). Symbols represent DSMC results, the solid lines
correspond to the random walk results given by Eq. (72), and the
dashed-dotted and dashed lines refer to the results obtained from the
first- and second-Sonine approximations, respectively.

random walk approximation are very similar and compare
quite well with simulations. Figure 8 shows the effect of
changing the intruder size (intruder diameter less than, equal
to, and greater than the gas grain diameter) while keeping
the mass ratio fixed (m0/m=1). Here, the agreement of all
three approximations with the simulation results is very rea-
sonable, except notably for the case with σ0/σ = 1/2, where
we see large differences between the Sonine approximations
and the simulation results, especially for high inelasticity.
Surprisingly, the random walk approximation still performs
well even for quite small values of the (common) coefficient
of restitution. Our results indicate that all approximations tend
to improve when the mass ratio m0/m is larger than 1 and
the diameter ratio σ0/σ is smaller than 1. This corresponds
to cases where ck+1/ck takes smaller values, i.e., to cases
where the particles become more diffusive, less ballistic, with
smaller values of the persistence collisions ñ.

VIII. CONCLUSIONS

This article addresses how far an intruder in a granular
gas (modeled as a gas of inelastic hard spheres) moves when
subjected only to collisions with particles of the granular gas,
as the system freely evolves and cools (cooling due to the
inelastic collisions). It is known [11,22] that the answer to this
question can be obtained by solving the (inelastic) Boltzmann
kinetic equation with the Chapman-Enskog method. Here, we
revisit the problem but employing a method that can be con-
sidered even more classic (older) than the Chapman-Enskog
approach, as it originates from the random walk method uti-
lized by Smoluchowski in his analysis of Brownian motion
(Sec. 11 of Ref. [2]).

The method followed in this paper is based on noticing that
the series for the MSD of a particle after N collisions (N � 1),

〈R2〉 = N (〈r2〉 + 2〈r1 · r2〉 + 2〈r1 · r3〉 + . . .), (74)

approximates a geometric series with roughly constant ratios
between terms. Approximating these ratios by �, we obtain
the result

〈R2〉 = N〈r2〉(1 + � + �2 + . . .) = N
〈r2〉

1 − �
. (75)

An explicit expression of � [see Eq. (67)] for a granular
gas of three-dimensional hard spheres has been obtained in
this paper. This expression reduces to the so-called mean-
persistence ratio when the collisions are elastic [9]. To gauge
the reliability of this theoretical result, a comparison with the
numerical results obtained here from the DSMC method [24]
for a granular gas in the HCS has been carried out. For a wide
range of masses, sizes, and coefficients of restitution, the ratio
of the successive terms appearing in Eq. (74) is well approx-
imated (see Table I and Figs. 1–3) by our expression (67) for
�. This good agreement validates the accuracy of Eq. (75), as
shown in Figs. 4 and 5. The agreement is surprisingly good.

We have also compared our expression for the MSD with
the first- and second-Sonine approximations derived from the
Chapman-Enskog solution of the Boltzmann equation. The
comparison is not straightforward as our MSD expression is
formulated in terms of 〈r2〉, while both Sonine approximations
are expressed in terms of 〈r〉, and the precise relationship
between these two quantities is unknown. To enable the com-
parison, we have used the empirical relationship between 〈r2〉
and 〈r〉 obtained from simulations. We found that our MSD
expression generally provides significantly better agreement
with simulations than the first-Sonine approximation. More-
over, its accuracy is comparable to that of the second-Sonine
approximation, which requires the computation of more colli-
sion integrals than our random walk approach.

Several extensions of this work are worth exploring. One
obvious extension is to apply our method to hard disks to
see how much the dimension of the medium affects its accu-
racy. Our considerations have been very general, so extending
them to other dimensions should be feasible. Specifically, we
expect that the mathematical steps used here to determine
the mean-persistence ratio 〈ω〉 in 3D will be quite similar
to those required for 2D. Furthermore, we have focused on
dilute systems with pair correlations at contact being 1. We
could also explore how the results change when granular
gases at moderate densities are considered. This article have
focused on the analysis of the MSD in the long-time regime.
An all-time analysis extending beyond the scaling discussion
of Sec. IV C would also be of interest. Also, extending our
analysis to the diffusion of an intruder within a granular gas
mixture presents an interesting avenue for future research. We
could also investigate how well our method would describe
granular gases with non-hard-core interactions (for instance,
by considering the so-called inelastic Maxwell models [11]),
or even how the inclusion of rotational degrees of freedom
in collisions (inelastic rough hard spheres) would affect the
results. We intend to explore these avenues in the future.

Finally, it is worth noting that a direct extension of our
approach to granular gases subjected to continuous energy
injection (e.g., via a thermostat) is not feasible. Our method
relies heavily on the concept of free paths between collisions
and their persistence. However, free paths are not well-defined
(they effectively cease to exist) when particle trajectories
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between collisions are perturbed by stochastic interactions
originating from an external thermostat.
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APPENDIX A: EVALUATION OF THE
MEAN-PERSISTENCE RATIO

In this Appendix we provide some technical details ap-
pearing in the calculation of the mean-persistence ratio of an
intruder immersed in a granular gas in HCS. The calculation
follows similar steps as those made for molecular gases in
the Chapman and Cowling textbook (see Chap. 5, Sec. 5.5
of Ref. [9]).

Let us consider an intruder of mass m0 and diameter σ0

moving in a granular gas of mass m and diameter σ . Let us
denote by v2 and v1 the post- and precollisional velocities
of the intruder in an intruder-grain collision. The relationship
between v2 and v1 is [11]

v2 = v1 − μ(1 + α0)(̂σ · g )̂σ, (A1)

where we recall that μ = m/(m + m0) and α0 is the coefficient
of normal restitution for intruder-grain collisions. Moreover,
g = v1 − v is the relative velocity of the colliding pair (v is the
velocity of the granular gas particle) and σ̂ is the unit vector
along the line joining the centers of the spheres that represent
the intruder and the grain at contact. Let 〈v2(v1)〉 denote the
average (or mean) velocity after collision of the intruder, given
that its velocity before the collision was v1. Taking the average
over collisions with particles of the granular gas, one has the
result

〈v2(v1)〉 = σ d−1

P0
χ0

∫
dv

∫
d σ̂ �(̂σ · g)(̂σ · g)v2 f (v),

(A2)
where σ = (σ + σ0)/2, �(x) is the Heaviside step function,
f (v) is the one-particle velocity distribution of the granular
gas and

P0 = σ d−1χ0

∫
dv

∫
d σ̂ �(̂σ · g)(̂σ · g) f (v)

= B1σ
d−1χ0

∫
dv g f (v). (A3)

Here, we have introduced the quantities [40]

Bk ≡
∫

d σ̂ �(̂σ · ĝ)(̂σ · ĝ)k = π (d−1)/2 

(

k+1
2

)



(
k+d

2

) . (A4)

Equation (A2) can be more explicitly written when one takes
into account the scattering rule (A1):

〈v2(v1)〉 = v1 − B3
σ d−1

P0
χ0μ(1 + α0)

∫
dv g g f (v), (A5)

where use has been made of the result∫
d σ̂ �(̂σ · g)(̂σ · g)k σ̂ = Bk+1gk−1g. (A6)

Since g = v1 − v, then Eq. (A2) becomes

〈v2(v1)〉 =
[
1 − 2

d + 1
μ(1 + α0)

]
v1 + 2B1

d + 1

σ d−1

P0

×χ0μ(1 + α0)
∫

dvg v f (v), (A7)

where the identity B3 = (2/(d + 1))B1 has been used.
For the sake of concreteness, henceforth we consider a

three-dimensional (d = 3) system. In this case, to evaluate
the integral appearing in Eq. (A7), we express v in terms
of spherical coordinates v, θ , and ϕ about v1 as axis. Since
the granular gas is in the HCS, its velocity distribution f (v)
depends on v only through its modulus v. This means that
the only nonvanishing contribution in the integral appearing in
(A7) comes from the component v cos θ of v in the direction
of v1. Thus, from Eq. (A7), the mean value of v2 can be written
as

〈v2(v1)〉 = ωv1, (A8)

where ω is

ω = 1 − 1

2
μ(1 + α0)

+ π

2

σ 2

P0
χ0μ(1 + α0)

∫
dv g

v cos θ

v1
f (v)

= 1 − 1

2
μ(1 + α0) + π2 σ 2

P0
χ0μ(1 + α0)

×
∫ ∞

0
dv

v3

v1
f (v)

∫ π

0
g sin θ cos θ dθ. (A9)

The quantity ω(v1) gives the ratio of the mean value of the
velocity of a particle after collision to the velocity before
collision when the latter velocity is of magnitude v1. It can
be referred to as the persistence-ratio for particles of speed v1

[9]. To perform the angular integral in Eq. (A9), one has take
into account the identity

g =
√

v2 sin2 θ cos2 ϕ + v2 sin2 θ sin2 ϕ + (v1 − v cos θ )2

= v

√
sin2 θ +

(v1

v
− cos θ

)2
. (A10)

Using Eq. (A10), the angular integral in Eq. (A9) gives∫ π

0
dθ sin θ cos θ

√
sin2 θ + (A − cos θ )2

=
{ 2

15 A(A2 − 5), if A < 1,
2
15

1−5A2

A2 , if A > 1,
(A11)
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where A ≡ v1/v. Taking into account the above results, ω can
be written as

ω(v1) = 1 − 1

2
μ(1 + α0) + 2

15
π2 σ 2

P0
χ0μ(1 + α0)

×
{∫ v1

0
dv

v4

v3
1

(
v2 − 5v2

1

)
f (v)

+
∫ ∞

v1

dvv
(
v2

1 − 5v2
)

f (v)

}
. (A12)

We are now in conditions to determine the average of ω(v1)
over all possible values of v1. This is nothing else than the

mean-persistence ratio 〈ω〉 defined as [9]

〈ω〉 =
∫

dv1 ω(v1) P0(v1) f0(v1)

N0
, (A13)

where f0(v1) is the one-particle velocity distribution of in-
truders and N0 is the total number of collisions between the
intruder and granular gas particles per unit time. This quantity
is defined as

N0 =
∫

dv1 P0(v1) f0(v1). (A14)

Hence, the mean-persistence 〈ω〉 is given by

〈ω〉 = 1 − 1

2
μ(1 + α0) + 2

15
π2 σ 2χ0μ(1 + α0)

N0

∫
dv1 f0(v1)

[ ∫ v1

0
dv

v4

v3
1

(
v2 − 5v2

1

)
f (v) +

∫ ∞

v1

dvv
(
v2

1 − 5v2
)

f (v)

]

= 1 − 1

2
μ(1 + α0) + 8

15
π3 σ 2χ0μ(1 + α0)

N0

∫ ∞

0
dv1 v2

1 f0(v1)

[∫ v1

0
dv

v4

v3
1

(
v2 − 5v2

1

)
f (v) +

∫ ∞

v1

dvv
(
v2

1 − 5v2
)

f (v)

]
,

(A15)

where in the last step we have accounted for that f is isotropic
in v1 in the HCS. So far, the expression (A15) for 〈ω〉 is
exact for inelastic hard spheres. However, to estimate it one
approximates f and f0 by the Maxwellian distributions

f (v) → fM(v) = n

(
m

2πT

)3/2

exp

(
−mv2

2T

)
, (A16)

f0(v) → f0,M(v) = n0

(
m0

2πT0

)3/2

exp

(
−m0v

2

2T0

)
, (A17)

where n and n0 are the number densities of intruders and

granular gas particles. For simplicity, we have set Boltzmann’s
constant to 1, kB = 1, in Eqs. (A16) and (A17). The substitu-
tion of these Maxwellian distributions into Eq. (A14) allows
us to get N0. It is given by [25]

N0 = n0ν0, (A18)

where ν0 is given by Eq. (17). To perform the integrals in Eq.
(A15), we introduce the dimensionless velocities c = v/vth

and c1 = v1/vth. In terms of c = ηc1, the mean-persistence
ratio 〈ω〉 is

〈ω〉 = 1 − 1

2
μ(1 + α0) + 8

15

σ 2χ0μ(1 + α0)

N0
nn0vthβ

3/2

×
[ ∫ 1

0
dηη4

(
η2 − 5

)
I (η) +

∫ ∞

1
dηη

(
1 − 5η2

)
I (η)

]
,

(A19)

where

I (η) =
∫ ∞

0
dx x6 e−(η2+β )x2 = 15

16

√
π

(η2 + β )7/2 . (A20)

Thus, 〈ω〉 can be written as

〈ω〉 = 1 − 1

2
μ(1 + α0) + 1

2

√
π

σ 2χ0μ(1 + α0)

N0
nn0vthβ

3/2

×
[ ∫ 1

0
dη

η4(η2 − 5)

(η2 + β )7/2 +
∫ ∞

1
dη

η(1 − 5η2)

(η2 + β )7/2

]
.

(A21)

The final expression of the mean-persistence ratio can
be achieved when one evaluates the integrals and inserts
Eq. (A18) into Eq. (A21). The result is

〈ω〉 = 1 − 1

2
μ(1 + α0) + 1

4
μ(1 + α0)β3/2

(
β

1 + β

)1/2

× β
√

1 + β sinh−1
(
β−1/2

) − 1 − β

β
√

1 + β
. (A22)

It is straightforward to see that Eq. (57) is equivalent to expres-
sion (A22). For elastic collisions (α = α0 = 1), β = m0/m
and Eq. (A22) [or its equivalent Eq. (57)] yields

〈ω〉 = 1

2
μ0 + 1

2
μ2

0μ
−1/2 ln

(
1 + μ1/2

μ
1/2
0

)
, (A23)

where μ0 = m0/(m + m0). Equation (A23) agrees with the
result (5.51,1) obtained in the Chapman–Cowling textbook [9]
for molecular gases. In particular, when m0 = m, Eq. (A23)
yields the simple result 〈ω〉 � 0.405806. When the in-
truder and granular gas particles are mechanically equivalent
(m0/m = σ0/σ = 1 but α = α0 �= 1), β = 1 and Eq. (A22)
leads to

〈ω〉 = 3 − α

4
+ 1 + α

16
(
√

2 sinh−1(1) − 2)

� 1 − 0.2971(1 + α). (A24)
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In this case � takes the following simple form:

� � 13 − α2

11 + α2
[1 − 0.2971(1 + α)]. (A25)

APPENDIX B: ALTERNATIVE EXPRESSIONS
FOR THE VELOCITY RATIO

This Appendix considers two alternative expressions to
Eq. (63) for the velocity ratio v̄0(t )/v̄0(t + τ0). We then
show how these changes would affect the theoretical esti-
mates of ck+1/ck and the MSD. Equation (63) was derived
from Equation (62) by approximating the integral using the
trapezoidal rule. A simpler alternative is to approximate this
integral with the rectangle rule. If we use the left rectangle
rule, then Eq. (63) would take the form v̄0(t + τ0) − v̄0(t ) ≈
ζ (t )τ0(t )v̄0(t )/2, from which it follows that

v̄0(t )

v̄0(t + τ0)
≈ [1 − ζ τ0/2]−1. (B1)

Inserting Eq. (64) into this equation and taking into account
Eqs. (47) and (59), we find

�LRR = 〈ω〉
1 − (1 − α2)/2dϒ

, (B2)

where the subscript LRR means the left rectangle rule. Sim-
ilarly, if we use the right rectangle rule in Eq. (63), we get
v̄0(t + τ0) − v̄0(t ) ≈ ζ (t + τ0)τ0(t )v̄0(t + τ0)/2, which im-
plies

v̄0(t )

v̄0(t + τ0)
≈ 1 + ζ τ0/2. (B3)

Again, by inserting Eq. (64) into this equation and considering
Eqs. (47) and (59), we obtain the following relationship:

�RRR =
(

1 + 1 − α2

2dϒ

)
〈ω〉, (B4)

where here the subscript RRR means the right rectangle rule.
In Fig. 9, we compare �LRR and �RRR with the perseverance
� given by Eq. (67) and with simulation data for ck+1/ck for
three cases we considered in Fig. 1. We see that the differences
among the three theoretical expressions are very small. In
Fig. 10 we compare the scaled MSD simulation values with
theoretical predictions derived from the persistence expres-
sions �LRR, �RRR, and � [the latter given by Eq. (67)]. Again,
the differences are small, especially when the restitution coef-
ficients are close to one. We also observe that for the case
with a larger intruder mass, the expression from Eq. (67)
(obtained via the trapezoidal rule) is significantly better than
those derived using the rectangular rules.

APPENDIX C: DIRECT SIMULATION MONTE
CARLO METHOD

The details of the DSMC method are well-documented in
Ref. [8] for a molecular gas in equilibrium. In the HCS, how-
ever, grains and intruders lose energy due to the inelasticity of
collisions. Therefore, it is necessary to account for this energy
loss in the velocity changes after collisions and in the decay
of temperature. However, if the granular mixture (in our case,

FIG. 9. DSMC values of the first ratios ck+1/ck of the reduced
collisional series vs the (common) coefficient of restitution α =
α0 for k = 1, 2, 3, 4 (circles, squares, up triangles, down triangles,
respectively) and, for from top to bottom, m0/m = 4, 1, 1/8 with
σ0/σ = 1 (see Fig. 1 for more details). The black solid lines represent
� defined by Eq. (67), the red dashed lines are �LRR and the blue
short-dashed lines are �RRR.

tracers and granular gas) is excited by the Gaussian thermostat

Fi = − 1
2 mivζi, (C1)

which exactly compensates for the collisional energy loss,
the measured quantities remain the same as for the HCS,
and the temperature achieve a stationary value which makes
the DSMC implementation simpler. The value of ζi corre-
sponds to that obtained from kinetic theory (see, for example,
Ref. [11]). This coefficient is kept constant throughout the
simulation, effectively modeling a steady cooling rate. As a
result, the instantaneous kinetic temperature of the intruder,

FIG. 10. DSMC values of 〈R2〉/(〈N〉〈r2〉) vs the (common)
coefficient of restitution (α = α0) for, from top to bottom,
{m0/m, σ0/σ } = {2, 1} (squares), {1, 1} (down triangles), and
{1/2, 1} (circles). The lines represent the function 1/(1 − �), where
� is given by Eq. (67) (black solid line), �LRR (red dashed line), and
�RRR (blue short-dashed line).
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defined as

T0(t ) = m0

d

〈
v2

i (t )
〉
i
,

where the average 〈·〉i is taken over all intruder particles at
time t , eventually reaches a steady value. Apart from this, step
4 detailed in Ref. [8] must be slightly modified to incorporate
the restitution coefficient. Hence, if the collision is accepted,
the velocities of particles are updated according to the scatter-
ing rules [11]:

vk → vk − (1 + αi j )μ ji(gk� · σ̂k� )̂σk�,

v� → v� + (1 + αi j )μi j (gk� · σ̂k� )̂σk�, (C2)

being μi j = mi/(mi + mj ), σ̂k� a random colliding direction
for a pair of colliding particles labeled as k and �, and gk� =
vk − v�. Here, i and j label the particles of species i and j that
are selected as candidates to collide in each Monte Carlo step.

In this specific work, we consider 105 intruder particles.
These particles do not interact significantly with the bulk
granular gas, as their concentration is negligible. Their role
is purely statistical: by simulating a large number of intrud-
ers, we obtain accurate averages of variables related to their
dynamics (e.g., velocity distribution, temperature). The total
number of simulated particles is approximately 3 × 105, but
only ∼2 × 105 of them correspond to the excess granular
particles. At each DSMC time step, we propose, on average,
400 candidate collision pairs. This number is chosen to ensure
that the number of accepted collisions statistically reproduces
the expected Boltzmann collision rate. The process is repeated
up to 3 × 105 runs to achieve good statistical accuracy.

To estimate the standard errors of Table I we have pro-
ceeded as follows. We ran M times the program described in
the previous paragraph and we record the M values of 〈r1 · rk〉
for k = 1, . . . , 5 from each run. For each k, we then calculated
the mean ak of 〈r1 · rk〉 and the standard deviation, sk , of these
〈r1 · rk〉 values over these M runs. Next, we estimated the
ratio ck+1/ck from the values of ak . The standard deviation of
ck+1/ck was derived from sk using standard error propagation
formulas for a division. In our simulations, the values of M are
of order of a few tens. For example, for the cases from Table I
where m0/m = 1, σ0/σ = 1, and α = α0 = 0.4, 0.6, 0.8, 1,
the corresponding values of M were 18, 17, 22, 20, respec-
tively. In our simulations we never used an M value smaller
than 10.

APPENDIX D: FIRST- AND SECOND-SONINE
APPROXIMATIONS TO THE DIFFUSION COEFFICIENT

In this Appendix we display the explicit expressions of the
(dimensionless) diffusion coefficient D̃ derived by consider-
ing the first- and second-Sonine approximations.

The first-Sonine approximation D̃[1] to the coefficient D̃ is
given by [22,23,25]

D̃[1] = 1

2

[



(
d
2

)



(
d+1

2

)]2
T0/T

(ν∗
a − 1

2ζ ∗)
, (D1)

where

ζ ∗ = ζ

ν
= 1 − α2

d
(D2)

is the (dimensionless) cooling rate and ν∗
a = νa/ν is the di-

mensionless collision frequency [25]

ν∗
a =

√
2

d

(
σ̄

σ

)d−1
χ0

χ
μ(1 + α0)

(
1 + β

β

)1/2

. (D3)

The first-Sonine approximation D̃[2] to the coefficient D̃
can be written as [22,23]

D̃[2] = �D̃[1], (D4)

where � is

� =
[

1 + ν∗
b (ζ ∗ − ν∗

c )

(ν∗
a − 1

2ζ ∗)(ν∗
d − 3

2ζ ∗)

]−1

. (D5)

Here, we have introduced the (dimensionless) collision fre-
quencies

ν∗
b = 1√

2d

(
σ

σ

)d−1
χ0

χ
μ(1 + α0)[β(1 + β )]−1/2, (D6)

ν∗
c =

√
2

d (d + 2)

(
σ

σ

)d−1
χ0

χ
μ(1 + α0)

(
β

1 + β

)1/2

Ac, (D7)

ν∗
d = 1√

2d (d + 2)

(
σ

σ

)d−1
χ0

χ
μ(1 + α0)

(
β

1 + β

)3/2

×
[

Ad − (d + 2)
1 + β

β
Ac

]
, (D8)

where

Ac = (d + 2)(1 + 2λ) + μ(1 + β ){(d + 2)(1 − α0) − [(11 + d )α0 − 5d − 7]λβ−1} + 3(d + 3)λ2β−1

+ 2μ2

(
2α2

0 − d + 3

2
α12 + d + 1

)
β−1(1 + β )2 − (d + 2)β−1(1 + β ), (D9)

Ad = 2μ2

(
1 + β

β

)2(
2α2

0 − d + 3

2
α0 + d + 1

)
[d + 5 + (d + 2)β] − μ(1 + β ){λβ−2[(d + 5) + (d + 2)β]

× [(11 + d )α0 − 5d − 7] − β−1[20 + d (15 − 7α0) + d2(1 − α0) − 28α0] − (d + 2)2(1 − α0)}
+ 3(d + 3)λ2β−2[d + 5 + (d + 2)β] + 2λβ−1[24 + 11d + d2 + (d + 2)2β]

+ (d + 2)β−1[d + 3 + (d + 8)β] − (d + 2)(1 + β )β−2[d + 3 + (d + 2)β], (D10)

Here, λ = μ0(1 − T/T0).

015420-17



YUSTE, GÓMEZ GONZÁLEZ, AND GARZÓ PHYSICAL REVIEW E 113, 015420 (2026)

[1] M. Smoluchowski, Sur le chemin moyen parcouru par les
molecules d’un gaz et sur son rapport avec la théorie de la
diffusion, Bulletin International d’Academie des Sciences de
Cracovie, Classe des Sciences Mathématiques et Naturelles 202
(1906), http://matwbn.icm.edu.pl/ksiazki/pms/pms1/pms1128.
pdf.

[2] M. von Smoluchowski, Zur kinetischen Theorie der Brown-
schen Molekularbewegung und der Suspensionen, Ann. Phys.
326, 756 (1906).

[3] A. Einstein, Über einen die Erzeugung und Verwandlung des
Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys.
322, 132 (1905).

[4] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, Columbus, OH, 1965).

[5] J. H. Jeans, LXX. The persistence of molecular velocities in
the kinetic theory of gases, London, Edinburgh, Dublin Philos.
Mag. J. Sci. 8, 700 (1904).

[6] J. H. Jeans, An Introduction to the Kinetic Theory of Gases
(Cambridge University Press, Cambridge, UK, 2009).

[7] L. M. Yang, Kinetic theory of diffusion in gases and liquids I.
Diffusion and the Brownian motion, Proc. R. Soc. London A
198, 94 (1949).

[8] S. B. Yuste, R. Gómez González, and V. Garzó, Gaseous dif-
fusion as a correlated random walk, Phys. Rev. E 110, 014102
(2024).

[9] S. Chapman, T. Cowling, and C. Cercignani, The Mathematical
Theory of Non-uniform Gases (Cambridge University Press,
Cambridge, UK, 1970).

[10] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular
Gases (Oxford University Press, Oxford, UK, 2004).

[11] V. Garzó, Granular Gaseous Flows (Springer Nature, Cham,
2019).

[12] I. Goldhirsch and G. Zanetti, Clustering instability in dissipative
gases, Phys. Rev. Lett. 70, 1619 (1993).

[13] S. McNamara, Hydrodynamic modes of a uniform granular
medium, Phys. Fluids A 5, 3056 (1993).

[14] J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Hydrody-
namics for granular flows at low density, Phys. Rev. E 58, 4638
(1998).

[15] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Origin of density
clustering in a freely evolving granular gas, Phys. Rev. E 60,
3150 (1999).

[16] V. Garzó, Instabilities in a free granular fluid described by the
Enskog equation, Phys. Rev. E 72, 021106 (2005).

[17] V. Garzó, J. M. Montanero, and J. W. Dufty, Mass and heat
fluxes for a binary granular mixture at low density, Phys. Fluids
18, 083305 (2006).

[18] P. P. Mitrano, V. Garzó, A. M. Hilger, C. J. Ewasko, and C. M.
Hrenya, Assessing a hydrodynamic description for instabilities
in highly dissipative, freely cooling granular gases, Phys. Rev.
E 85, 041303 (2012).

[19] J. J. Brey and M. J. Ruiz-Montero, Shearing instability
of a dilute granular mixture, Phys. Rev. E 87, 022210
(2013).

[20] P. P. Mitrano, V. Garzó, and C. M. Hrenya, Instabilities in
granular binary mixtures at moderate density, Phys. Rev. E 89,
020201(R) (2014).

[21] V. Garzó, Stability of freely cooling granular mixtures at mod-
erate densities, Chaos, Solitons Fractals 81, 497 (2015).

[22] V. Garzó and J. M. Montanero, Diffusion of impurities in a
granular gas, Phys. Rev. E 69, 021301 (2004).

[23] V. Garzó and F. V. Reyes, Mass transport of impurities in a
moderately dense granular gas, Phys. Rev. E 79, 041303 (2009).

[24] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation
Monte Carlo of Gas Flows (Clarendon Press, Oxford, UK,
1994).

[25] E. Abad, S. B. Yuste, and V. Garzó, On the mean square
displacement of intruders in freely cooling granular gases,
Granular Matter 24, 111 (2022).

[26] P. K. Haff, Grain flow as a fluid-mechanical phenomenon,
J. Fluid Mech. 134, 401 (1983).

[27] V. Garzó and J. W. Dufty, Homogeneous cooling state for a
granular mixture, Phys. Rev. E 60, 5706 (1999).

[28] S. T. Paik, Is the mean free path the mean of a distribution? Am.
J. Phys. 82, 602 (2014).

[29] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford Uni-
versity Press, Oxford, UK, 2003).

[30] A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of
Macromolecules (American Institute of Physics, New York,
NY, 1994).

[31] A. Bodrova, A. V. Chechkin, A. G. Cherstvy, and R. Metzler,
Quantifying non-ergodic dynamics of force-free granular gases,
Phys. Chem. Chem. Phys. 17, 21791 (2015).

[32] A. S. Bodrova, Diffusion in multicomponent granular mixtures,
Phys. Rev. E 109, 024903 (2024).

[33] A. S. Bodrova and A. I. Osinsky, Anomalous diffusion in poly-
disperse granular gases, Phys. Rev. E 111, 035402 (2025).

[34] A. Bodrova, A. K. Dubey, S. Puri, and N. Brilliantov, Interme-
diate regimes in granular Brownian motion: Superdiffusion and
subdiffusion, Phys. Rev. Lett. 109, 178001 (2012).

[35] R. Gómez González, V. Garzó, R. Brito, and R. Soto, Diffusion
of impurities in a moderately dense confined granular gas, Phys.
Fluids 36, 123387 (2024).

[36] A. Santos and S. M. Blinde, Inelastic collisions of two spheres.
Wolfram demonstrations project, https://demonstrations.
wolfram.com/InelasticCollisionsOfTwoSpheres/.

[37] A. Santos, A Concise Course on the Theory of Classical Liquids:
Basics and Selected Topics, Lecture Notes in Physics (Springer
International Publishing, Cham, 2016).

[38] V. Garzó and A. Santos, Kinetic Theory of Gases in Shear Flows.
Nonlinear Transport (Springer, Netherlands, 2003).

[39] S. B. Yuste and R. Gómez González, Simulation data of tracer
particles diffusing in a granular gas of inelastic hard spheres un-
der homogeneous cooling state, Zenodo (2025), https://zenodo.
org/records/18068284.

[40] T. P. C. van Noije and M. H. Ernst, Velocity distributions in ho-
mogeneous granular fluids: The free and heated case, Granular
Matter 1, 57 (1998).

015420-18

http://matwbn.icm.edu.pl/ksiazki/pms/pms1/pms1128.pdf
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1002/andp.19053220607
https://doi.org/10.1080/14786440409463242
https://doi.org/10.1098/rspa.1949.0089
https://doi.org/10.1103/PhysRevE.110.014102
https://doi.org/10.1103/PhysRevLett.70.1619
https://doi.org/10.1063/1.858716
https://doi.org/10.1103/PhysRevE.58.4638
https://doi.org/10.1103/PhysRevE.60.3150
https://doi.org/10.1103/PhysRevE.72.021106
https://doi.org/10.1063/1.2336755
https://doi.org/10.1103/PhysRevE.85.041303
https://doi.org/10.1103/PhysRevE.87.022210
https://doi.org/10.1103/PhysRevE.89.020201
https://doi.org/10.1016/j.chaos.2015.07.022
https://doi.org/10.1103/PhysRevE.69.021301
https://doi.org/10.1103/PhysRevE.79.041303
https://doi.org/10.1007/s10035-022-01256-0
https://doi.org/10.1017/S0022112083003419
https://doi.org/10.1103/PhysRevE.60.5706
https://doi.org/10.1119/1.4869185
https://doi.org/10.1039/C5CP02824H
https://doi.org/10.1103/PhysRevE.109.024903
https://doi.org/10.1103/PhysRevE.111.035402
https://doi.org/10.1103/PhysRevLett.109.178001
https://doi.org/10.1063/5.0245373
https://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/
https://zenodo.org/records/18068284
https://doi.org/10.1007/s100350050009

