
Academic Editors: Laura Lea

Sacerdote and Huaizhong Zhao

Received: 30 September 2025

Revised: 18 December 2025

Accepted: 29 December 2025

Published: 3 January 2026

Copyright: © 2026 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license.

Article

Nonlinear Transport of Tracer Particles Immersed in a Strongly
Sheared Dilute Gas with Inelastic Collisions
David González Méndez 1,† and Vicente Garzó 1,2,*,†

1 Departamento de Física, Universidad de Extremadura, Avda. de Elvas s/n, E-06006 Badajoz, Spain;
dgonzaleqt@alumnos.unex.es

2 Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Avda. de Elvas s/n,
E-06006 Badajoz, Spain

* Correspondence: vicenteg@unex.es
† These authors contributed equally to this work.

Abstract

Nonlinear transport of tracer particles immersed in a sheared dilute gas with inelastic colli-
sions is analyzed within the framework of the Boltzmann kinetic equation. Two different
yet complementary approaches are employed to obtain exact results. First, we maintain
the structure of the inelastic Boltzmann collision operator but consider inelastic Maxwell
models (IMMs) instead of the realistic model of inelastic hard spheres (IHS). Using IMMs
enables us to compute the collisional moments of the inelastic Boltzmann operator for
mixtures without explicitly knowing the velocity distribution functions of the mixture.
Second, we consider a kinetic model of the Boltzmann equation for IHS. This kinetic model
is based on the equivalence between a gas of elastic hard spheres subjected to a drag force
proportional to the particle velocity and a gas of IHS. We solve the Boltzmann–Lorentz
kinetic equation for tracer particles using a generalized Chapman–Enskog-like expansion
around the shear flow distribution. This reference distribution retains all hydrodynamic
orders in the shear rate. The mass flux is obtained to first order in the deviations of the
concentration, pressure, and temperature from their values in the reference state. Due to
the anisotropy induced in the velocity space by shear flow, the mass flux is expressed in
terms of tensorial quantities rather than conventional scalar diffusion coefficients. Unlike
the previous results obtained for IHS using different approximations, the results derived in
this paper are exact. Generally, the comparison between the IHS results and those found
here shows reasonable quantitative agreement, especially for IMM results. This good
agreement shows again evidence of the reliability of IMMs for studying rapid granular
flows. Finally, we analyze segregation by thermal diffusion as an application of the theory.
Phase diagrams illustrating segregation are presented and compared with previous IHS
results, demonstrating qualitative agreement.

Keywords: granular mixtures; Boltzmann kinetic equation; inelastic Maxwell models;
BGK-type kinetic model; Non-Newtonian transport properties

MSC: 82C40; 82C70; 82D05

1. Introduction
Granular materials are collections of solid particles that interact primarily through

contact. Examples in industry include grains, rice, gravel, powders, coffee beans, and
pharmaceutical pills. They are also important in geological processes such as landslides,
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snow avalanches, erosion and/or plate tectonics. Granular materials have a few things in
common, one of which is that they have macroscopic dimensions; therefore, their interac-
tions are dissipative. This feature likely makes granular flows distinct from conventional
flows observed in molecular gases or liquids. When subjected to violent and sustained
excitation, the motion of the grains resembles the random motion of atoms or molecules in
a molecular gas. Under these conditions, known as rapid flow regime, the system admits
a hydrodynamic-type description, and the granular material is often referred to in the
literature as a granular gas [1].

To analyze the impact of inelasticity in collisions on the dynamical properties of the
solid particles, an idealized model is usually considered in the rapid flow regime. The
idealized model is a gas of hard spheres with instantaneous inelastic collisions (inelastic
hard spheres, IHS). In the simplest version of the model, the spheres are assumed to be
completely smooth and, so, the inelasticity of collisions is accounted for by a (positive)
coefficient of restitution.

Under rapid-flow conditions, the tools of classical kinetic theory of gases, adapted to
dissipative dynamics, can be used to derive the corresponding hydrodynamic equations
for the IHS model with explicit expressions for the transport coefficients [1–5]. In particular,
for low-density gases, the conventional Boltzmann equation has been extended to IHS [3,5]
and the kinetic equation has been solved by means of the Chapman–Enskog method [6] to
first order in the spatial gradients. The corresponding Navier–Stokes transport coefficients
are given in terms of the solution of a set of coupled linear integral equation. However,
as with elastic collisions [6,7], for hard spheres, these integral equations are usually ap-
proximately solved by considering the first few terms in a Sonine polynomial expansion
of the distribution function. This procedure can be extended to the more realistic case of
mixtures, namely when grains have different masses and/or diameters. However, the
problem is more complex than that of a monocomponent gas since the number of transport
coefficients is greater and they depend on more parameters (see, for example, Refs. [8–12]).
Additionally, determining the transport properties from the Boltzmann equation for both
elastic and/or inelastic hard spheres is a very difficult task for far from equilibrium states
(i.e., beyond the Navier–Stokes domain).

Due to the aforementioned difficulties when the hard sphere kernel is employed,
alternative approaches are commonly used in kinetic theory to obtain exact results. One
possibility is to maintain the intricate mathematical structure of the Boltzmann collision op-
erator while assuming a different interaction model: the so-called inelastic Maxwell model
(IMM). To the best of our knowledge, this interaction model was introduced independently
in Refs. [13,14] at the beginning of the 21st century. The main reason for introducing the
IMM was to analyze in a clean way the overpopulation associated with the high energy
tails of the distribution function in the homogeneous cooling state (namely, a homogeneous
state with a temperature decaying in time) [14–26]. As with the conventional Maxwell
molecules [27], the collision rate for the IMM is independent of the relative velocity of the
colliding spheres. This contrasts with the IHS model, in which the collision rate is propor-
tional to the relative velocity. The main advantage of using the IMM instead of IHS is that a
collisional moment of degree k can be expressed in terms of velocity moments of degree k
or smaller than k, without knowing the velocity distribution function. This property allows
one to obtain the exact forms of the Navier–Stokes transport coefficients [28], as well as the
rheological properties of sheared granular gases [29].

Another possible approach to achieving exact results is considering simpler kinetic
models of the Boltzmann equation for IHS. These models are mathematically more tractable
than the Boltzmann equation (since they usually replace the original Boltzmann collision
operator by a simple relaxation term) and typically maintain the primary physical properties
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of the true kinetic equation. In particular, for elastic collisions, the well-known Bhatnagar–
Gross–Krook (BGK) kinetic model [30,31] has proven to be an accurate tool to determine
nonlinear transport properties, especially in shearing nonequilibrium states [31,32]. Several
models have been proposed for inelastic collisions in single gases [33–35]. However, the
number of kinetic models proposed in the literature for multicomponent granular gases is
much smaller. We are aware of only one kinetic model reported in the granular literature:
the model proposed by Vega Reyes et al. (VGS model) [36]. This contrasts with the large
number of kinetic models proposed in the case of molecular mixtures (see, for instance,
Refs. [37–45]). The VGS model is based on the equivalence between a gas of elastic hard
spheres subjected to a drag force proportional to the particle velocity and a gas of IHS [46].
The kinetic model is defined in terms of a relaxation term that can be selected from among
the various models proposed for molecular mixtures. Recently [47], the VGS model has
been solved in three different nonequilibrium problems. A comparison of the results
derived in [47] with those obtained from the Boltzmann equation for IHS shows general
agreement, especially when dissipation is not strong.

One of the most interesting nonequilibrium problems in granular flows is the diffusion
of tracer particles in a granular gas. Studying diffusion in a granular binary mixture
where one of the species is present in tracer concentration is more amenable to analytical
treatment than studying the general case, since the state of the excess species is unaffected
by the presence of tracer particles. Most previous studies on this topic [48–51] have been
focused on tracer diffusion in a freely cooling granular gas (homogeneous cooling state,
HCS). In this situation, analytical (approximate) expressions have been derived for the
tracer diffusion coefficient for IHS [49–52], as well as for the IMM [5]. These expressions
have been shown to agree very well with the numerical results obtained from the direct
simulation Monte Carlo (DSMC) method [53]. Nevertheless, beyond the HCS, studies
on tracer diffusion are scarce. In particular, at the level of kinetic theory and within the
context of the Boltzmann equation for IHS, some previous works [54,55] have analyzed the
diffusion of impurities in a granular gas under uniform shear flow (USF). As in the case of
the HCS, the results obtained in Refs. [54,55] are approximate since they were obtained by
considering the leading term in a Sonine polynomial expansion of the distribution functions.
Thus, it would be useful to revisit the previously analyzed problem for IHS [54,55] but
starting from a kinetic equation where exact results can be obtained.

The objective of this paper is to analyze the diffusion of tracer particles in sheared
granular gases from the inelastic Boltzmann equation. As previously mentioned, two
different yet complementary approaches are taken. First, we consider the IMM, and so
the collision rate of the two colliding particles appearing inside of the Boltzmann collision
operators Jij[ fi, f j] ( fi and f j being the velocity distribution functions of species i and j) is
independent of the relative velocity. Using the Maxwell kernel instead of the hard sphere
kernel enables us to precisely determine the moments of Jij[ fi, f j] necessary for determining
the nonlinear rheological properties in the USF. Thus, we can avoid using uncontrolled
approximations to achieve analytical results, as in the case of IHS. Although the transport
properties of USF can be in principle determined from IMM, the intricate mathematical
structure of the Boltzmann operators prevents us the possibility from deriving the explicit
forms of the velocity distribution functions. For this reason, and to complement the IMM
results, we also consider the simple VGS kinetic model [36] as a second approach. Apart
from obtaining the non-Newtonian transport properties of the system, the simplicity of
the kinetic model allows us to explicitly obtain the velocity distribution functions in the
USF. This is likely one of the main advantages of using a kinetic model instead of the true
Boltzmann equation.
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The study of tracer diffusion in granular shear flows has attracted the attention of
engineers and physicists for years. Additionally, this is a problem of practical interest be-
cause granular materials must be mixed before processing can begin. Due to the complexity
of the general problem, the limiting situation where the tracer particles are mechanically
equivalent to the particles of the granular gas (self-diffusion problem) was widely stud-
ied in earlier works. Thus, experimental studies include both systems with macroscopic
flows [56,57] and vertical vibrated systems [58]. As a complement, computer simulation
works [59–61] on dense systems have mainly analyzed the influence of the solid volume
fraction on the elements of the self-diffusion tensor. As said before, analytical studies
on this problem are scarce, and to the best of our knowledge, only [54,55] have studied
this problem. Unlike previous computational studies [59–61], the analysis performed in
Refs. [54,55] considers tracer and granular gas particles as mechanically distinct, resulting
in energy nonequipartition as the coefficients of restitution decrease. Even in the tracer
limit case, studying mass transport under USF is quite intricate due to the cross-effects
induced by shear flow that appear in mass transport. This gives rise to tensorial quantities
(Dkℓ, Dp,kℓ, and DT,kℓ) instead of the conventional scalar coefficients (the diffusion coeffi-
cient D, the pressure diffusion coefficient Dp, and the thermal diffusion coefficient DT) for
characterizing the mass transport.

Searching for exact solutions in kinetic theory is interesting from both a formal point
of view and as a means of gauging the reliability of these types of solutions. Here, we
compare the exact results derived from IMM and the VGS kinetic model with those obtained
approximately for IHS and in some cases with computer simulations available in the
granular literature. Because the strength of the shear rate in the USF problem is arbitrary,
this comparison can be considered a stringent test of the IMM and VGS models’ ability to
capture the trends observed in realistic granular flows.

One of the main limitations of using Maxwell models for granular gases is that these
models do not describe real particles since they do not interact according to a specific
interaction potential. This contrasts with the situation for molecular gases, where elastic
Maxwell models are consistent with a repulsive potential that is inversely proportional to
the fourth power of the distance in three dimensions [27]. Nevertheless, many researchers
working in the field acknowledge that the loss of physical realism can be offset by the
quantity of exact analytical results obtained using IMM. As Ernst and Brito [15] claim,
“what harmonic oscillators are for quantum mechanics and dumb-bells for polymer physics,
is what elastic and inelastic Maxwell models are for kinetic theory.” Apart from their
mathematical tractability, it should be noted that some experiments involving magnetic
grains with dipolar interactions have been well described by IMMs [62].

Regarding the use of kinetic models for IHS instead of the original Boltzmann equation,
many previous studies on sheared molecular gases have clearly demonstrated the reliability
of these models in quantitatively reproducing the Boltzmann results for the rheological
properties of the gas (see for instance, [31]). However, beyond the second-degree velocity
moments, significant discrepancies for the fourth-degree moments obtained from the
Boltzmann and BGK equations have been found in the USF for strong shear rates [31]. In
this context and based on a previous comparison with the DSMC results for the velocity
distribution function of the USF [63], it is expected that the VGS kinetic model will provide
accurate predictions for the distribution function at low velocities. However, significant
differences may appear in the high-velocity region.

The plan of this paper is as follows: Section 2 introduces the Boltzmann equation and
its balance hydrodynamic equations, and presents the form of the Boltzmann collision
operators for the IMM and the VGS kinetic model. Section 3 analyzes the rheology of
a granular mixture under USF in the tracer limit within the context of IMM. Once the
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rheological properties are determined, the elements of the diffusion tensors are explicitly
obtained in Section 4 for IMM by solving the Boltzmann equation by means of a generalized
Chapman–Enskog expansion [6] around the shear flow distribution. Section 5 briefly shows
how to evaluate the tracer diffusion coefficients using the VGS model, while the comparison
between the results obtained for IHS, IMM and the VGS model is carried out in Section 6.
The comparison generally shows reasonable agreement, especially for the IMM. As an
application, Section 7 addresses the problem of segregation by thermal diffusion. For the
sake of simplicity, we consider a situation in which the thermal gradient is perpendicular to
the shear flow plane (xy-plane); so, only segregation parallel to the thermal gradient occurs
in the system. In this situation, the sign of the thermal diffusion factor Λz characterizes the
tendency of the tracer particles to move towards the hot or cold plate. This paper ends in
Section 8 with a discussion of the results obtained in this paper.

2. Boltzmann Kinetic Equation for Granular Mixtures
We consider a granular binary mixture constituted by smooth hard disks (d = 2)

or spheres (d = 3) of masses mi and diameters σi (i = 1, 2). The collisions between
grains are inelastic and characterized by the (constant) coefficients of normal restitution αij

(0 ≤ αij ≤ 1). The inelasticity in collisions only affects the translational degrees of freedom
of grains. At a kinetic theory level, all the relevant information on the state of the mixture
is given through the knowledge of the one-particle velocity distribution fi(r, v; t) of species
i. In the low-density regime and in the absence of external forces, the distributions fi obey
the set of coupled nonlinear (inelastic) Boltzmann equations:

(∂t + v · ∇) fi(r, v; t) = ∑
j

Jij
[
v| fi(t), f j(t)

]
, (1)

where Jij
[
v| fi, f j

]
are the Boltzmann collision operators [5]. The most relevant hydrody-

namic fields in a binary mixture are the number densities ni, the mean flow velocity U,
and the granular temperature T. In terms of the distributions fi, those fields are defined
as follows:

ni =
∫

dv fi(v), (2)

ρU =
2

∑
i=1

ρiUi =
2

∑
i=1

∫
dvmiv fi(v), (3)

nT = p =
2

∑
i=1

niTi =
2

∑
i=1

mi
d

∫
dvV2 fi(v), (4)

where ρi = mini is the mass density of species i, n = n1 + n2 is the total number density,
ρ = ρ1 + ρ2 is the total mass density, V = v − U is the peculiar velocity, and p is the
hydrostatic pressure. Furthermore, the third equality of Equation (4) defines the kinetic
temperatures Ti of each species, which measure their mean kinetic energies. For inelastic
collisions (αij ̸= 1), energy equipartition is in general broken and so Ti ̸= T [5].

The collision operators conserve the particle number of each species and the total
momentum, but the total energy is not conserved. These conditions lead to the follow-
ing identities: ∫

dvJij[v| fi, f j] = 0, (5)

2

∑
i=1

2

∑
j=1

∫
dvmivJij[v| fi, f j] = 0, (6)
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2

∑
i=1

2

∑
j=1

∫
dv

1
2

miV2 Jij[v| fi, f j] = −d
2

nTζ. (7)

Here, ζ is identified as the “cooling rate” due to inelastic collisions among all species.
At a kinetic level, it is also convenient to introduce the “cooling rates” ζi for the partial
temperatures Ti. They are defined as follows:

ζi =
2

∑
j=1

ζij = −
2

∑
j=1

1
dniTi

∫
dvmiV2 Jij[v| fi, f j], (8)

where the second equality defines the quantities ζij. According to Equations (7) and (8), the
total cooling rate ζ can be written in terms of the partial cooling rates ζi as follows:

ζ = T−1
2

∑
i=1

xiTiζi, (9)

where xi = ni/n is the concentration or mole fraction of species i.
The macroscopic balance equations for the densities of mass, momentum and energy

can be easily now derived from the constraints (5)–(7). They are given by:

Dtni + ni∇ · U +
∇ · ji

mi
= 0 , (10)

DtU + ρ−1∇ · P = 0 , (11)

DtT − T
n

2

∑
i=1

∇ · ji
mi

+
2

dn
(∇ · q + P : ∇U) = −ζT . (12)

In the above equations, Dt = ∂t + U · ∇ is the material derivative,

ji = mi

∫
dv V fi(v) (13)

is the mass flux for species i relative to the local flow,

P =
2

∑
i=1

∫
dv miVV fi(v) (14)

is the total pressure tensor,

q =
2

∑
i=1

∫
dv

1
2

miV2V fi(v) (15)

is the total heat flux. It must be remarked that the balance Equations (10)–(12) apply
regardless of the details of the model for inelastic collisions considered. However, the
influence of the collision model appears through the dependence of the cooling rate and
the hydrodynamic fluxes on the coefficients of restitution.

2.1. Inelastic Maxwell Models

On the other hand, the hydrodynamic Equations (10)–(12) do not constitute a closed
set of differential equations for the hydrodynamic fields. To close them, one needs to
solve the Boltzmann Equation (1) to derive the corresponding constitutive equations for
the fluxes and identify the explicit expressions of the transport coefficients. In the case of
IHS, those expressions cannot be exactly determined and one has to resort to approximate
solutions based on the use of Grad’s moment method [5,64–66] and/or the truncation of a
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Sonine polynomial expansion [3,5]. As mentioned in the Introduction section, a possible
way of obtaining exact forms for the transport coefficients is to consider the IMM where
the collision rate is independent of the relative velocity of the colliding spheres. For this
interaction model, the Boltzmann collision operators JIMM

ij [ fi, f j] are [5,22]

JIMM
ij [v1| fi, f j] =

νM,ij

njSd

∫
dv2

∫
dσ̂
[
α−1

ij fi(v′′
1 ) f j(v′′

2 )− fi(v1) f j(v2)
]
. (16)

Here, νM,ij is an effective velocity-independent collision frequency for collisions of type
i-j and Sd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions. In Equation (16), in
a binary collision, the relationship between the pre-collisional velocities (v′′

1 , v′′
2 ) and the

post-collisional velocities (v1, v2) is as follows:

v′′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, v′′

2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ , (17)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit vector directed
along the centers of the two colliding spheres, and µij = mi/(mi + mj). As for IHS [3], the
scattering rules (17) yield (σ̂ · g′′

12) = −α−1
ij (σ̂ · g12) where g′′

12 = v′′
1 − v′′

2 . The collision
frequencies νM,ij appearing in (16) can be seen as free parameters in the model. As usual,
its dependence on the restitution coefficients αij and the parameters of the mixture can be
chosen to optimize the agreement with the results obtained from the Boltzmann equation
for IHS. Of course, the choice is not unique and may depend on the property of interest.

It is important to note that the inelastic Boltzmann equation applies only to very dilute
gases. This means that the diameter of the hard spheres is much smaller than the mean free
path between particles. As a consequence, all the distribution functions appearing in the
Boltzmann collision operator (16) are evaluated at the same point r and at the same time t.
Because of this, collisional transfer contributions to the pressure tensor Pij and the heat flux
q are negligible in the low-density regime. Thus, only kinetic contributions to these fluxes
are relevant. In addition, a crucial hypothesis in the derivation of the operator Jij[ fi, f j]

is the absence of correlations between the velocities of the two particles that are about to
collide (molecular chaos hypothesis). This assumption is essential to obtaining the form
of the Boltzmann operator (16) since the two-body distribution function f2,ij(r, v1, r, v2)

factorizes into the product of the one-particle velocity distribution functions fi(r, v1) and
f j(r, v1). More details on the derivation of the inelastic Boltzmann equation can be found
in the textbooks [3,5].

As happens for elastic collisions [6,31], the main advantage of using the IMM instead
of IHS is that a velocity moment of order k of the Boltzmann collision operator JIMM

ij [ fi, f j]

only involves moments of order less than or equal to k of the distributions functions. This
allows one to determine the Boltzmann collisional moments without the explicit knowledge
of the velocity distribution functions. In particular, the first and second collisional moments
of JIMM

ij [ fi, f j] are [29]

∫
dvmiVJIMM

ij [ fi, f j] = −νM,ij

dρj
µji(1 + αij)

(
ρjji − ρijj

)
, (18)

∫
dvmiVkVℓ JIMM

ij [ fi, f j] = −νM,ij

dρj
µji(1 + αij)

{
2ρjPi,kℓ −

(
ji,k jj,ℓ + jj,k ji,ℓ

)
− 2

d + 2
µji(1 + αij)

[
ρjPi,kℓ + ρiPj,kℓ −

(
ji,k jj,ℓ + jj,k ji,ℓ

)
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+

(
d
2
(
ρi pj + ρj pi

)
− ji · jj

)
δkℓ

]}
, (19)

where pi = niTi = Tr(Pi)/d. The quantities ζij defined by Equation (8) can be exactly
obtained for IMM from Equation (19) as follows:

ζij =
2νM,ij

d
µji(1 + αij)

[
1 − µji

2
(1 + αij)

θi + θj

θj
+

µji(1 + αij)− 1
dρj pi

ji · jj

]
, (20)

where
θi =

miT
mTi

, m =
m1 + m2

2
. (21)

To optimize the agreement with the IHS results, we adjust the collision frequencies
νM,ij to obtain the same expression of ζij as the one found for IHS in the HCS [5]. However,
given that the cooling rates are not exactly known for IHS, a good estimate for them can be
achieved by considering the local equilibrium approximation for the velocity distribution
functions fi, i.e.,

fi(V) → fi,M(V) = ni

(
mi

2πTi

)d/2
exp

(
−miV2

2Ti

)
. (22)

In this approximation, one has [5]:

ζIHS
ij → 4π(d−1)/2

dΓ
(

d
2

) njµjiσ
d−1
ij

(
θi + θj

θiθj

)1/2

(1 + αij)

[
1 − µji

2
(1 + αij)

θi + θj

θj

]
υth, (23)

where υth =
√

2T/m is a thermal velocity defined in terms of the temperature T(t) of the
mixture. Thus, according to Equations (20) and (23), to get ζij = ζIHS

ij one has to chose the
collision frequencies νM,ij as follows:

νM,ij =
2π(d−1)/2

Γ
(

d
2

) njσ
d−1
ij

(
2Ti
mi

+
2Tj

mj

)1/2

. (24)

Upon deriving Equation (24), use has been made of the fact that the mass flux ji vanishes
in the HCS. In the remainder of this paper, we will take the choice (24) for νM,ij.

2.2. Kinetic Model for Granular Mixtures

Another different way of overcoming the mathematical intricacies of the Boltzmann
collision operator for IHS is to consider a kinetic model. Here, as said in Section 1, we
consider the VGS kinetic model [36] for granular mixtures. To the best of our knowledge,
this is the only kinetic model has been proposed so far in the granular literature for this sort
of system. The model is based on the equivalence between a system of elastic hard spheres
subject to a nonconservative force proportional to the particle velocity with a gas of IHS [46].
This (approximate) mapping between a molecular hard sphere gas in the presence of a drag
force with IHS allows us to extend any kinetic model of molecular mixtures proposed in
the literature to inelastic multicomponent gases. Here, the relaxation term appearing in the
model reported in [36] has been chosen to be the well-known Gross–Krook (GK) kinetic
model [37] proposed many years ago for studying transport properties of multicomponent
molecular gases. In this sense, the kinetic model employed in this paper can be seen as a
direct extension of the GK model [37] to granular mixtures.
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In the tracer limit, within the VGS kinetic model for granular mixtures [36], the
Boltzmann collision operators J22[ f2, f2] and J12[ f1, f2] are defined, respectively, as follows:

J22[ f2, f2] → K22[ f2, f2] = −1 + α22

2
ν22( f2 − f22) +

ϵ22

2
∂

∂V
·
[
(v − U2)

]
f2, (25)

J12[ f1, f2] → K12[ f1, f2] = −1 + α12

2
ν12( f1 − f12) +

ϵ12

2
∂

∂V
·
[
(v − U1)

]
f1, (26)

where

νij =
4π(d−1)/2

dΓ
(

d
2

) njσ
d−1
ij

(
2T̃i
mi

+
2T̃j

mj

)1/2

(27)

is an effective collision frequency for IHS, T̃i = Ti − (mi/d)(Ui − U)2,

ϵij =
1
2

νijµ
2
ji

[
1 +

miT̃j

mjT̃i
+

3
2d

mi

T̃i

(
Ui − Uj

)2
]
(1 − α2

ij), (28)

and

fij(v) = ni

(
mi

2πTij

)d/2

exp

[
− mi

2Tij

(
v − Uij

)2
]

. (29)

In Equation (29), we have introduced the quantities

Uij = µijUi + µjiUj, Tij = T̃i + 2µijµji

{
T̃j − T̃i +

(Ui − Uj)
2

2d

[
mj +

T̃j − T̃i

T̃i/mi + T̃j/mj

]}
. (30)

According to Equations (24) and (27), note that νM,ij ̸= νij.

3. Rheology of a Sheared Granular Mixture in the Tracer Limit: IMM
We consider the tracer limit (x1 → 0) in a granular binary mixture. In this situation,

since the concentration of the tracer species is negligibly small, the state of the excess
granular gas is not perturbed by the presence of the tracer particles. Thus, the distribution
function f2 of the excess granular gas obeys the nonlinear closed Boltzmann equation:

∂t f2 + v · ∇ f2 = JIMM
22 [ f2, f2] . (31)

Additionally, the collisions between tracer particles themselves can be also neglected in the
kinetic equation of the distribution f1:

∂t f1 + v · ∇ f1 = JIMM
12 [ f1, f2] . (32)

We assume that the system (granular gas plus tracers) is under USF. At a macroscopic
level, the USF state is characterized by constant densities n2 ≃ n and n1, a uniform granular
temperature, and a linear velocity profile:

U1,k = U2,k = Uk = akℓrℓ, akℓ = aδkxδℓy, (33)

a being the constant shear rate. This linear velocity profile assumes no boundary layer near
the walls and is generated by the Lee–Edwards boundary conditions [67], which are simply
periodic boundary conditions in the local Lagrangian frame moving with the mean flow
velocity U. For elastic collisions, the temperature grows in time due to the viscous heating
term (−aPxy > 0) and hence a steady state is not possible unless an external (artificial) force
is introduced [68]. However, in the case of inelastic collisions, the temperature changes
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in time due to the competition between two (opposite) mechanisms: on the one hand,
viscous (shear) heating (−aPxy > 0) and, on the other hand, energy dissipation in collisions
(−ζT < 0). A steady state is achieved when both mechanisms cancel each other and
the fluid autonomously seeks the temperature at which the above balance occurs. Under
stationary conditions, the balance Equation (12) becomes as follows:

aP2,xy = −d
2

ζ2 p2, (34)

where we have taken into account that in the tracer limit, Pxy ≃ P2,xy, ζ ≃ ζ2 and
p ≃ p2 = n2T2. According to Equation (34), it is quite apparent the intrinsic connec-
tion between the shear field and collisional dissipation in the system. Thus, the steady
shear flow state characterized by Equation (34) is inherently a non-Newtonian state since
the collisional cooling (which is fixed by the mechanical properties of the particles) sets the
strength of the (reduced) velocity gradient in the steady state. This means that for given
values of the shear rate a and the coefficient of restitution α22, the steady-state relation (34)
gives the (reduced) shear rate a∗ = a/νM,22(T) as a unique function of the coefficient of
restitution α22.

At a microscopic level, all the space dependence of the distribution functions f2(r, v; t)
and f1(r, v; t) only occurs through their dependence on the peculiar velocity V = v−U [69].
Thus, the USF is defined as that which is spatially homogeneous when one refers the veloc-
ities of the particles to the local Lagrangian frame moving with the linear velocity field
Uk = akℓrℓ. In this frame, the distributions f2 and f1 adopt the following forms:

f2(r, v; t) = f2(V; t), f1(r, v; t) = f1(V; t). (35)

The fact that the USF becomes homogeneous in the above Lagrangian frame implies that
it does not necessarily require the application of boundary conditions to be generated in
computer simulations. However, as said before, the usual boundary conditions employed
to generate the USF in simulations are the well-known Lees–Edwards periodic boundary
conditions [67].

In the steady state, the corresponding set of Boltzmann Equations (31) and (32) in the
above Lagrangian frame become as follows:

−aVy
∂ f2

∂Vx
= JIMM

22 [ f2, f2], −aVy
∂ f1

∂Vx
= JIMM

12 [ f1, f2]. (36)

Since the mass and heat fluxes vanish in the steady USF state, the relevant transport properties
of the system are related to the pressure tensors P2,kℓ and P1,kℓ, defined as follows:

Pi,kℓ =
∫

dV miVkVℓ fi(V). (37)

3.1. Rheology for the Excess Granular Gas

Explicit expressions for the (reduced) nonzero elements of P∗
2 = P2/p2 and

P∗
1 = P1/(x1 p2) can be easily obtained from Equation (36) when one takes into account

Equation (19) with ji = 0. In terms of the dimensionless quantities,

ν∗η =
(d + 1 − α22)(1 + α22)

d(d + 2)
(38)

and

ζ∗2 =
ζ2

νM,22
=

1 − α2
22

2d
, (39)
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the nonzero elements of P∗
2 are as follows [1]:

P∗
2,yy = P∗

2,zz = 1 − ζ∗2
ν∗η

=
d
2

1 + α22

d + 1 − α22
, P∗

2,xx = d − (d − 1)P∗
2,yy =

d
2

d + 3 − (d + 1)α22

d + 1 − α22
, (40)

P∗
2,xy = −

P∗
2,yy

ν∗η
a∗ = − d2(d + 2)

2(d + 1 − α22)2 a∗, (41)

a∗ =
a

νM,22
=

√
d
2

ν∗η ζ∗2
P∗

2,yy
=

d + 1 − α22

d

√
1 − α2

22
2(d + 2)

. (42)

As mentioned before, the expression (42) clearly indicates the intrinsic connection
between the (reduced) shear rate and collisional dissipation in steady USF. Parameter a∗ is
the relevant nonequilibrium parameter of the problem because it measures the departure
of the system from equilibrium. For elastic collisions (α22 = 1), a∗ = 0 and the equilibrium
results of a molecular gas are recovered; that is, P∗

2,kℓ = δkℓ. As the coefficient of restitution
α22 decreases (collision dissipation increases), a∗ increases and so, the granular gas departs
from equilibrium. According to Equation (42), since 0 ≤ α22 ≤ 1, then the range of reduced
shear rates a∗ is defined in the interval 0 ≤ a∗2 ≤ (d + 1 − α22)

2(1 − α2
22)/(2d2(d + 2)). In

particular, for disks (d = 2), 0 ≤ a∗ ≤ 0.53, while 0 ≤ a∗ ≤ 0.42 for spheres (d = 3).

3.2. Rheology for the Tracer Particles

In the case of P∗
1 , its nonzero elements are given by [29]:

P∗
1,yy = P∗

1,zz = −
Y + XP∗

2,yy

X0
, P∗

1,xy =
a∗P∗

1,yy − XP∗
2,xy

X0
, P∗

1,xx = dγ − (d − 1)P∗
1,yy, (43)

where γ = T1/T2 is the temperature ratio and

Y =
1

d + 2
µ12µ21

(
1 + θ

θ

)
(1 + α12)

2ν∗M,12, (44)

X0 = − 2
d(d + 2)

µ21(1 + α12)[d + 2 − µ21(1 + α12)]ν
∗
M,12, (45)

X =
2

d(d + 2)
µ12µ21(1 + α12)

2ν∗M,12. (46)

In Equations (44) and (46), θ = θ1/θ2 = µ/γ, µ = m1/m2 is the mass ratio and

ν∗M,12 =
νM,12

νM,22
=

(
σ12

σ2

)d−1(1 + θ

2θ

)1/2
. (47)

The temperature ratio is obtained by numerically solving the following equation:

P∗
1,xy

P∗
2,xy

=
γζ∗1
ζ∗2

, (48)

where

ζ∗1 =
2ν∗M,12

d
µ21(1 + α12)

[
1 − µ21

2
(1 + α12)(1 + θ)

]
. (49)

Appendix A shows that the steady-state solutions (40)–(43) are indeed linearly stable
solutions.
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4. Tracer Diffusion Under USF: Results for IMM
We assume that the USF state characterized by the rheological properties (40)–(43) is

slightly perturbed by weak spatial gradients. Under these conditions, one expects that the
mass flux of the intruder j1 has nonzero contributions due to the existence of the gradients
∇x1, ∇p and ∇T. Additionally, the anisotropy induced by the strong shear flow in the
velocity space gives rise to the presence of tensorial quantities (Dkℓ, Dp,kℓ and DT,kℓ) to
describe the mass transport instead of the conventional scalar coefficients (D, Dp and DT)
when the granular gas is in the HCS [11]. The determination of the above tensors is the
main goal of the present work.

As already carried out in a previous paper [55], we have to start from the Boltzmann
Equation (32) with a general space and time dependence. Thus, we denote by Us,k = akℓrℓ
the mean flow velocity of the undisturbed USF state. However, when we disturb the USF
state, the true mean flow velocity is Uk = Us,k + δUk, where δUk is a small perturbation to
Us,k. Additionally, the true peculiar velocity is c = v−U = V− δU, where now V = v−Us.

In the frame moving with the (undisturbed) mean velocity Us, Equation (32) becomes
as follows:

∂

∂t
f1 − aVy

∂

∂Vx
f1 + (V + Us) · ∇ f1 = JIMM

12 [ f1, f2], (50)

where the derivative ∇ f1 is taken at constant V. The macroscopic balance equations
associated with this disturbed USF state follows from the general Equations (10)–(12) when
one takes into account that U = Us + δU. The result is as follows:

∂tn1 + Us · ∇n1 = −∇ · (n1δU)− ∇ · j1

m1
, (51)

∂tδUk + akℓδUℓ + (Us,ℓ + δUℓ)∇ℓδUk = −ρ−1∇jP2,kℓ, (52)

d
2

n∂tT +
d
2

n(Us + δU) · ∇T + aPxy +∇ · q + P : ∇δU = −d
2

pζ. (53)

Here, we recall that in the tracer limit, ρ ≃ ρ2 = m2n2, n ≃ n2, T ≃ T2, ζ ≃ ζ2, and P ≃ P2.
In Equations (51)–(53), the expressions of the cooling rate ζ, the mass flux j1, the pressure
tensor P, and the heat flux q are defined by Equations (7), (13), (14) and (15), respectively,
with the replacement of V by the peculiar velocity c in the disturbed USF state.

4.1. Generalized Chapman–Enskog Expansion

Since the deviations from the USF are assumed to be small, our goal is to solve the
Boltzmann–Lorentz kinetic Equation (50) up to first order in the spatial gradients of the
hydrodynamic fields:

A(r; t) ≡ {x1(r, t), p(r, t), T(r, t), δU(r, t)}. (54)

In Equation (54), as in previous works on granular mixtures [11], we represent the mass
flux j1 in terms of the spatial gradients of the fields x1, p = nT, and T. However, in contrast
to previous studies [11,12] where the granular gas is in the HCS, the system is strongly
sheared and hence the conventional Chapman–Enskog method [6] cannot be applied. Thus,
as in [55], we look for a solution to Equation (50) by using a generalized Chapman–Enskog-
like expansion where the velocity distribution function is expanded about a local shear flow
reference state in terms of the small spatial gradients of the hydrodynamic fields relative to
those of USF. This is the main new ingredient of the expansion. This type of generalized
Chapman–Enskog expansion has been considered in the case of elastic gases to obtain the
set of shear-rate dependent transport coefficients [70] in a thermostatted shear flow problem
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and it has also been considered for monocomponent [71,72] and multicomponent [55,73]
granular gases under USF.

As in the conventional Chapman–Enskog method [6], we look for a normal or hy-
drodynamic solution. This means that the spatial dependence of the distribution f1 oc-
curs only through a functional dependence of the hydrodynamic fields A(r, t). Thus,
f1(r, v; t) = f1(A(r; t), V). We can make this functional dependence local by assuming
that the strength of the hydrodynamic fields is small, in which case f1 can be expanded in
powers of the fields as follows:

f1(A(r; t), V) = f (0)1 (A(r; t), V) + f (1)1 (A(r; t), V) + . . . . (55)

The successive approximations f (k)1 are of order k in the gradients of x1, p, T, and δU, but
they retain all the hydrodynamic orders in the shear rate. In steady USF, this is equivalent
to arbitrary values of the coefficient of restitution α22 due to the relation (42). In this paper,
only the first-order approximation will be considered. Substituting the expansion (55) into
the definitions (7) and (13)–(15) yields the corresponding expansions for the cooling rate
and the fluxes. Similarly to the conventional Chapman–Enskog method [6], the operator ∂t

must be also expanded as follows:

∂t = ∂
(0)
t + ∂

(1)
t + ∂

(2)
t + · · · , (56)

where the action of each operator ∂
(k)
t is obtained from the hydrodynamic Equations (51)–(53).

These results provide the basis for generating the Chapman-Enskog solution to the inelastic
Boltzmann–Lorentz Equation (50).

Before applying the Chapman–Enskog-like expansion to first order in spatial gradients,
it is helpful to briefly discuss the convergence of this perturbation method. To put the
discussion in a proper context, it is important first to remark that, in spite of its long
history and obvious importance, there are few exact results regarding the convergence of
the conventional Chapman-Enskog expansion [6] for molecular gases. To the best of our
knowledge, the first study on this issue is due to Ikenberry and Truesdell [74] for a gas of
Maxwell molecules in USF. They obtained an expression of the stress tensor as a function
of the shear rate that is analytic about the origin. However, for hard spheres, a solution
of the BGK kinetic model of USF shows that the pressure tensor expansion in powers of
the shear rate about the origin does not converge [75]. Conversely, a convergent expansion
about the point at infinity suggests that the Chapman-Enskog expansion is asymptotic.
Another interesting study is that of McLennan [76] for a general class of cutoff potentials.
He proves the convergence of the expansion for the linearized Boltzmann equation (namely,
the convergence of the partial sum of the Chapman–Enskog series made of the linear terms
of the form ∂ℓ1 ∂ℓ2 . . . ∂ℓk

A, where A denotes the hydrodynamic fields). Finally, a general
discussion of Grad [77] indicates that the expansion is at least asymptotic.

Studies on the convergence of the Chapman–Enskog expansion for granular gases
are much scarcer than those for molecular gases. We are only aware of one study [78] that
has analyzed this problem for sheared granular gases. Unlike the elastic case, starting
from a simple kinetic model of IHS, it is shown that the expansion of the shear stress in
powers of the shear rate is convergent. The radius of convergence increases with inelasticity.
Studying the convergence of the generalized Chapman–Enskog expansion proposed in
this paper is an interesting problem that goes beyond the scope of this work. As in the
conventional Chapman–Enskog method [6], we expect the results derived here for the mass
flux to be a well-behaved representation of the shear-rate dependence of the tracer diffusion
coefficients to first order in spatial gradients (Navier–Stokes order). Qualitative agreement
between the kinetic theory results (based on the above Chapman–Enskog-like expansion)

https://doi.org/10.3390/math14010179

https://doi.org/10.3390/math14010179


Mathematics 2026, 14, 179 14 of 42

and molecular dynamics simulations for the self-diffusion tensor in dense granular gases
supports the above statement.

4.2. Zeroth-Order Approximation

The kinetic equation for the zeroth-order distribution f (0)1 (reference distribution) can
be obtained by substituting the expansions (55)–(56) into Equation (50):

∂
(0)
t f (0)1 − aVy

∂

∂Vx
f (0)1 = JIMM

12 [V| f (0)1 , f (0)]. (57)

To the lowest order in the expansion, the conservation laws give:

∂
(0)
t x1 = 0, ∂

(0)
t δUk = −akℓδUℓ, (58)

∂
(0)
t ln T = ∂

(0)
t ln p = − 2

dp
aP(0)

xy − ζ. (59)

As shown in Refs. [71,72], for given values of a and α22, the steady-state condition (34)
establishes a mapping between the pressure p and temperature T, such that every pressure
corresponds to one and only one temperature. However, in the local USF state (reference
state) the pressure and temperature are specified separately. Hence, the collisional cooling
term ζ p cannot be compensated for by the the viscous heating term a|P(0)

xy |. This implies

that the zeroth-order distributions for the gas f (0) and the tracer f (0)1 depend on time
through their dependence on the pressure and temperature. Consequently, the (reduced)
shear rate a∗ = a/νM,22(p, T) depends on space and time through its dependence on the
collision frequency νM,22(p, T).

Equation (57) can be rewritten in a more convenient form when one takes into account
that the time dependence of f (0)1 is only through x1, p, T, and δU. Using Equations (58) and (59),
one gets the following kinetic equation:

−
(

2
dp

aP(0)
xy + ζ

)(
p

∂

∂p
+ T

∂

∂T

)
f (0)1 − acy

∂

∂cx
f (0)0 = JIMM

12 [V| f (0)1 , f (0)]. (60)

Equation (60) has the same form as the corresponding Boltzmann equation for the USF. On
the other hand, in Equation (60) f (0)1 (r, v; t) is a local USF distribution function. Thus,
the occurrence of this local USF distribution as a reference state of the generalized
Chapman–Enskog method is not an assumption and/or choice but rather a consequence
of the solution to the Boltzmann–Lorentz equation to zeroth-order in the gradients. In the
steady state ( 2

dp aP(0)
xy + ζ = 0), the first term on the left hand side of Equation (60) vanishes

and hence, it is easy to see that the expressions of the zeroth-order pressure tensor P(0)
1,xy are

given by Equations (43)–(46).

4.3. First-Order Approximation

Given that most of mathematical steps involved in the determination of the first-
order contribution j(1)1 to the mass flux for IMM are similar to those made in [55] for IHS,
only some partial results on this calculation will be reported in this section. We refer the
interested reader to [55] for more specific details. The first-order distribution f (1)1 obeys the
following kinetic equation:(

∂
(0)
t − aVy

∂

∂Vx

)
f (1)1 − JIMM

12 [ f (1)1 , f (0)2 ] = A1 · ∇x1 + B1 · ∇p + C1 · ∇T

+D1 : ∇δU + JIMM
12 [ f (0)1 , f (1)2 ]. (61)
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In Equation (61), the quantities A1(c), B1(c), C1(c), and D1(c) are defined by
Equations (C.9)–(C.12), respectively, of [55], while the first-order distribution of the excess
granular gas f (1)2 (c) has the following form [71,72]:

f (1)2 (c) = B2(c) · ∇p + C2(c) · ∇T +D2(c) : ∇δU. (62)

According to the right hand side of Equation (61), the solution to this kinetic equation is
as follows:

f (1)1 (c) = A1(c) · ∇x1 +B1(c) · ∇p + C1(c) · ∇T +D1(c) : ∇δU, (63)

where the coefficients A1, B1, C1, and D1 are functions of the peculiar velocity and the
hydrodynamic fields x1, p, and T.

To first-order, the mass flux j(1)1 is defined as follows:

j(1)1 =
∫

dv m1c f (1)1 (c). (64)

Substitution of Equation (63) into Equation (64) gives the following expression:

j(1)1,k = −m1Dkℓ∇ℓx1 −
m2

T
Dp,kℓ∇ℓp − ρ

T
DT,kℓ∇ℓT, (65)

where ∇ℓ ≡ ∂/∂rℓ and

Dkℓ = −
∫

dc ck A1,ℓ(c), (66)

Dp,kℓ = −Tm1

m2

∫
dc ck B1,ℓ(c), (67)

DT,kℓ = −Tm1

ρ

∫
dc ck C1,ℓ(c). (68)

According to Equation (65), the mass flux of the tracer particles is expressed in terms of
a diffusion tensor Dkℓ, a pressure diffusion tensor Dp,kℓ, and a thermal diffusion tensor
DT,kℓ. In the time-dependent problem, the set of generalized transport coefficients Dkℓ,
Dp,kℓ, and DT,kℓ are nonlinear functions of the shear rate and the parameters of the system
(masses m1 and m2 and diameters σ1 and σ2, and the coefficients of restitution α22 and
α12). Compared to the conventional diffusion problem in the Navier–Stokes domain [11],
there are important differences. First, the diagonal elements of the diffusion tensors are
generally different. Second, the off-diagonal elements (which are zero in the Navier–Stokes
approximation) are different from zero. These features are both intrinsically related to the
fact that the system is arbitrarily far from equilibrium. Interestingly, shear flow induces
cross-effects in the diffusion of tracer particles. As we will show later, the elements Dxy,
Dp,xy, and DT,xy are clearly different from zero for finite shear rates (which is equivalent
to values of α22 different from 1 in the steady state). Thus, a gradient of concentration,
pressure and/or temperature along the direction of the flow of the system (x-axis) creates a
transport of tracers parallel to the gradient of the flow velocity (y-axis).

The corresponding integral equations for the unknowns A1, B1, and C1 defining
the diffusion coefficients can be obtained by substituting Equations (62) and (63) into
Equation (61) and identifying coefficients of independent gradients. To achieve these equa-
tions, one needs to take into account the action of the operator ∂

(0)
t on the hydrodynamic

fields given by Equations (51)–(53). The set of coupled linear integral equations for the
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unknowns can be obtained after considering the contributions coming from the action of
the operator ∂

(0)
t on ∇p and ∇T:

∂
(0)
t ∇p = −∇

(
2
d

aP(0)
xy + pζ

)
= −

2a
d

∂P(0)
xy

∂p
+ 2ζ

∇p −
2a

d
∂P(0)

xy

∂T
− 1

2
pζ

T

∇T, (69)

∂
(0)
t ∇T = −∇

(
2T
dp

aP(0)
xy + ζ

)
=

[
2aT
dp2

(
1 − p

∂

∂p

)
P(0)

xy − Tζ

p

]
∇p −

[
2a
dp

(
1 + T

∂

∂T

)
P(0)

xy +
1
2

ζ

]
∇T. (70)

Since the distribution function f (1)1 is qualified as a normal or hydrodynamic solution,
it depends on time through its dependence on the hydrodynamic fields A(r, t). As a
consequence, for a given function Z(x1, p, T, δU), one has the following identity:

∂
(0)
t Z =

∂Z
∂p

∂
(0)
t p +

∂Z
∂T

∂
(0)
t T +

∂Z
∂δUi

∂
(0)
t δUi

= −
(

2
dp

aP(0)
xy + ζ

)(
p

∂

∂p
+ T

∂

∂T

)
Z + akℓδUℓ

∂Z
∂ck

, (71)

where in the last step, we have taken into account that Z depends on δU through
c = V − δU.

4.4. Steady-State Conditions

As discussed in previous works [55,73], the determination of the diffusion transport
coefficients requires, in general, to numerically solve a set of differential equations. Thus,
to obtain analytical forms for those coefficients, we restrict ourselves to linear deviations
from the steady USF state. In this case, since the contributions to the mass flux are already
of first order in the deviations from this steady state, we have to compute Dij, Dp,ij, and
DT,ij to zero order in the deviations, namely, under steady-state conditions. In this case,

according to Equation (59), in the steady USF state ∂
(0)
t p = ∂

(0)
t T = 0 which implies that

(2/dp)aP(0)
xy + ζ = 0. Therefore, taking into account the results (69)–(71), the set of integral

equations that the unknowns X ≡ {A1, B1,C1} obey in the steady state is as follows:

−acy
∂

∂cx
A1 − JIMM

12 [A1, f (0)2 ] = A1, (72)

−acy
∂

∂cx
B1 −

(
2a
d

∂pP(0)
2,xy + 2ζ

)
B1 − JIMM

12 [B1, f (0)2 ] = B1

−
[

2aT
dp2

(
1 − p∂p

)
P(0)

2,xy −
Tζ

p

]
C1 + JIMM

12 [ f (0)1 ,B2], (73)

−acy
∂

∂cx
C1 −

[
2a
dp

(1 + T∂T)P(0)
2,xy +

1
2

ζ

]
C1 − JIMM

12 [C1, f (0)2 ] = C1

+

(
2a
d

∂T P(0)
2,xy −

pζ

2T

)
B1 + JIMM

12 [ f (0)1 ,C2]. (74)

It must be recalled that in Equations (72)–(74), all the quantities are evaluated in the steady
state. In particular, the expressions of ζ and P(0)

2,xy are given by Equations (38) and (41),
respectively. Henceforth, the calculations will be restricted to this particular condition.
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As expected the structure of the integral Equations (72) and (73) is similar to the
one derived for IHS [55], except by the replacement of the Boltzmann–Lorentz collision
operators JIMM

12 [X , f (0)2 ] and JIMM
12 [ f (0)1 ,X ] by their corresponding IHS counterparts. The

main advantage of using IMM instead of IHS is that the collisional moments associated
with the operator JIMM

12 [X ,Y ] can be exactly computed. In particular, in the case of the mass
flux, according to Equation (18), one has the following results:

∫
dc m1ck

 JIMM
12 [A1,ℓ, f (0)2 ]

JIMM
12 [B1,ℓ, f (0)2 ]

JIMM
12 [C1,ℓ, f (0)2 ]

 = Ω

 m1Dkℓ
m2
T Dp,kℓ
ρ
T DT,kℓ

, (75)

∫
dc m1ck

(
JIMM
12 [ f (0)1 ,B2,ℓ]

JIMM
12 [ f (0)1 , C2,ℓ]

)
=

(
0
0

)
, (76)

where we have taken into account that j(0)1 = j(1)2 = 0 and

Ω =
νM,12

d
µ21(1 + α12). (77)

Thus, multiplying both sides of Equations (72)–(74) by m1ck and integrating over c,
one gets the following set of algebraic equations:(

akµ + Ωδkµ

)
Dµℓ =

n
ρ1

P(0)
1,kℓ, (78)

(
2a
d

∂pP(0)
2,xy + 2ζ

)
Dp,kℓ −

(
akµ + Ωδkµ

)
Dp,µℓ =

T
m2

(
ρ1

ρ
∂pP(0)

2,kℓ − ∂pP(0)
1,kℓ

)
+

[
2a
dp
(
1 − p∂p

)
P(0)

2,xy − ζ

]
DT,kℓ, (79)

[
2a
dp

(1 + T∂T)P(0)
2,xy +

1
2

ζ

]
DT,kℓ −

(
akµ + Ωδkµ

)
DT,µℓ =

T
ρ

(
ρ1

ρ
∂T P(0)

2,kℓ − ∂T P(0)
1,kℓ

)
−
(

2a
dn

∂T P(0)
2,xy −

ζ

2

)
Dp,kℓ. (80)

In Equations (79) and (80), the derivatives of the pressure tensors with respect to the
hydrostatic pressure p and/or the temperature T can be conveniently written in terms of
the derivatives with respect to the (reduced) shear rate a∗ when one takes into account that
P(0)

2,kℓ and P(0)
1,kℓ depend on p and T explicitly and through their dependence on the reduced

shear rate a∗(p, T) ∝
√

T/p. Thus,

∂pP(0)
2,kℓ = ∂p pP∗

2,kℓ(a∗) =
(

1 − a∗
∂

∂a∗

)
P∗

2,kℓ(a∗), (81)

∂T P(0)
2,kℓ = ∂T pP∗

2,kℓ(a∗) =
p

2T
a∗

∂

∂a∗
P∗

2,kℓ(a∗), (82)

∂pP(0)
1,kℓ = ∂px1 pP∗

1,kℓ(a∗) = x1

(
1 − a∗

∂

∂a∗

)
P∗

1,kℓ(a∗), (83)

∂T P(0)
1,kℓ = ∂Tx1 pP∗

1,kℓ(a∗) =
x1 p
2T

a∗
∂

∂a∗
P∗

1,kℓ(a∗). (84)
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The derivatives of P∗
2,kℓ and P∗

1,kℓ with respect to a∗ in the steady state for IMM are obtained
in Appendix B.

For elastic collisions (α22 = α12 = 1), Equations (40)–(49) lead to a∗ = 0, ζ∗2 = 0,
P∗

2,kℓ = P∗
1,kℓ = δkℓ, γ = 1, and

Ω ≡ Ωel =
4π(d−1)/2

dΓ
(

d
2

) nσd−1
12

√
2Tm2

m1(m1 + m2)
. (85)

In this limiting case, the solution to Equations (78)–(80) is Dkℓ = Delδkℓ, Dp,kℓ = Del
p δkℓ, and

DT,kℓ = Del
T δkℓ, where

Del =
p

m1Ωel , Del
p = x1

(
1 − m1

m2

)
T

m2Ωel , Del
T = 0. (86)

As expected, the expressions (86) agree with those obtained in the Navier–Stokes domain
for a molecular mixture of Maxwell molecules in the tracer limit [6].

As expected from the results derived for IHS [55], the coefficients Dkℓ obey an au-
tonomous set of algebraic equations whose solution can be written as follows:

Dkℓ =
p

m1Ω

(
δkµ −

akµ

Ω

)
P∗

1,µℓ, (87)

where we recall that the tensor akµ = aδkxδµy. On the other hand, since the coefficients
Dp,kℓ and DT,kℓ obey a set of algebraic coupled equations, their forms are more intricate than
that of the tracer diffusion tensor Dkℓ.

According to Equation (87), it is apparent that Dxx ̸= Dyy = Dzz, while the only
nonzero (negative) off-diagonal elements are Dxy ̸= Dyx. This is a consequence of the
symmetry of the USF problem. Additionally, for small shear rates, P∗

1,xy ∝ a∗; so, the off-
diagonal elements are proportional to a∗ in this limiting situation. Thus, while the diagonal
coefficients can be considered generalizations of the Navier–Stokes transport coefficients,
the off-diagonal coefficients Dxy and Dyx can be considered generalizations of the Burnett
transport coefficients (i.e., coefficients relating the mass flux with terms of second order in
the hydrodynamic gradients). A similar shear-rate dependence occurs for the elements of
the tensors Dp,kℓ and DT,kℓ.

4.5. Self-Diffusion Tensor

An interesting limiting case corresponds to the self-diffusion problem, namely, when
the tracer particles are mechanically equivalent to the particles of the granular gas (i.e.,
σ1 = σ2 = σ, m1 = m2 = m, and α22 = α12 = α). This situation has been widely
studied in computer simulations of dense granular gases [59–61]. In this limiting case,
Equations (79) and (80) lead to Dp,kℓ = DT,kℓ = 0 and the mass flux obeys a generalized
Fick’s law given by:

j(1)1,k = −mDself
kℓ

∂x1

∂rℓ
, (88)

where

Dself
kℓ =

p
mΩ

(
δkµ −

akµ

Ω

)
P∗

2,µℓ, (89)

and Ω = (νM,22/2d)(1 + α).
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5. Tracer Diffusion Under USF from a Kinetic Model of
Granular Mixtures

To complement the results derived for the IMM, we consider here the kinetic model
(referred to as the VGS model) defined by Equations (25) and (26). Let us consider separately
the results obtained in the USF for the excess granular gas and the tracer particles.

5.1. Excess Granular Gas

The rheological properties in the USF state can be easily determined from the first
equation of (36) when one makes the replacement JIMM

22 [ f2, f2] → K22[ f2, f2]. With this
change, the nonzero elements of P∗

2,ij are as follows [47]:

P∗
2,yy = P∗

2,zz =
1 + α22

1 + α22 + ϵ∗22
=

2
3 − α22

, P∗
2,xx = d − (d − 1)P∗

2,yy =
d
2

d + 3 − (d + 1)α22

d + 1 − α22
, (90)

P∗
2,xy = −

2P∗
2,yy

1 + α22 + 2ϵ∗22
a∗ = − 8a∗

(3 − α22)2(1 + α22)
, (91)

a∗ =
a

ν22
= −d

2
ζ∗2

P∗
2,xy

=
(3 − α22)(1 + α22)

8

√
d(1 − α22). (92)

As said in the Introduction, one of the main advantages of considering a kinetic
model instead of the true Boltzmann equation is the possibility of obtaining the velocity
distribution function. In the case of the excess granular gas, the kinetic equation obeying
its distribution function f2(V) can be cast into the following form:(

ω∗
22 − ϵ∗22V · ∂

∂V
− 2a∗Vy

∂

∂Vx

)
f2 = Φ2(V), (93)

where ω∗
22 = ω22/ν22 = 1+ α22 − 3ϵ∗22, ϵ∗22 = ϵ22/ν22 = (1− α2

22)/4, and Φ2 ≡ (1+ α22) f22.
A formal (hydrodynamic) solution to Equation (93) is as follows:

f2(V) =
(

ω∗
22 − ϵ∗22V · ∂

∂V
− 2a∗Vy

∂

∂Vx

)−1
Φ2(V)

=
∫ ∞

0
ds e−ω∗

22s exp
(

ϵ∗22sV · ∂

∂V
+ 2a∗Vy

∂

∂Vx

)
Φ2(V). (94)

The action of the shift operators eϵ∗22sV· ∂
∂V and e2a∗Vy

∂
∂Vx in velocity space on an arbitrary

function of velocity g(V) is as follows:

eϵ∗22sV· ∂
∂V g(V) = g

(
eϵ∗22sVx, eϵ∗22sVy, eϵ∗22sVz

)
, e2a∗Vy

∂
∂Vx g(V) = g

(
Vx + 2a∗sVy, Vy, Vz

)
, (95)

where the three-dimensional case (d = 3) has been considered for the sake of concrete-
ness. Taking into account the relations (95), the distribution f2(V) can be written as
f2(V) = n2(2T2/m2)

−d/2 φ2(c), where c = V/
√

2T2/m2 is a dimensionless velocity and

φ2(c) = π−d/2(1 + α22)
∫ ∞

0
ds e−ω∗

22s exp
[
− e2ϵ∗22s

(
c2 + 4a∗scxcy + 4a∗2s2c2

y

)]
. (96)

The dependence of the distribution φ2(c) on the coefficient of restitution α22 provided by
Equation (96) has been shown to agree very well (at least in the regime of thermal velocities,
i.e., |c| ∼ 1) with the DSMC results [63].
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To illustrate the dependence of φ2(c) on the dimensionless velocity c, we consider
d = 3 and define the marginal distribution as follows:

φ2,x(cx) =
∫ +∞

−∞
dcy

∫ +∞

−∞
dcz φ2(c). (97)

Substituting Equation (96) into Equation (97) and performing the velocity integrals, one gets
the following:

φ2,x(cx) = π−1/2(1 + α22)
∫ ∞

0
ds

e−(1+α22−ϵ∗22)s√
1 + 4a∗2s2

exp
(
− e2ϵ∗22s c2

x
1 + 4a∗2s2

)
. (98)

For elastic collisions (α22 = 1), ϵ∗22 = 0, a∗ = 0, and φ2,x(cx) reduces to the equilibrium
distribution φel

2,x(cx) = π−1/2e−c2
x . Figure 1 plots the ratio R2,cx (cx) = φ2,x(cx)/φel

2,x(cx) as
a function of the reduced velocity cx for three different values of α22. We observe a quite
distortion of the scaled USF distribution φ2,x(cx) from its equilibrium value φel

2,x since the
ratio R2,cx (cx) deviates clearly from 1. The deviation of φ2,x(cx) from φel

2,x increases with
increasing dissipation as expected.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

cx

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
2
,c
x
(c
x
)

α22 = 0.5

α22 = 0.7

α22 = 0.9

Figure 1. Plot of the ratio R2,cx (cx) = φ2,x(cx)/φel
2,x(cx) obtained by means of the VGS kinetic model

vs the (scaled) velocity cx for three different values of the coefficient of restitution α22:α22 = 0.9, 0.7,
and 0.5.

5.2. Tracer Particles

To determine the rheological properties of the tracer particles from the VGS model one
has to make the replacement JIMM

12 [ f1, f2] → K12[ f1, f2] in the second equation of (36). With
this change, the expressions of the nonzero elements of P∗

1,ij are as follows [47]:

P∗
1,yy =

2
(1 + α12)ν

∗
12 + 2ϵ∗12

, P∗
1,xy = − 2a∗

(1 + α12)ν
∗
12 + 2ϵ∗12

P∗
1,yy, P∗

1,xx = γ − (d − 1)P∗
1,yy. (99)

In Equations (91) and (99), we have introduced the following quantities:

ν∗12 =
ν12

ν22
=

(
σ12

σ2

)d−1√1 + θ

2θ
, ϵ∗12 =

ϵ12

ν22
=

1
2

ν∗12µ2
21(1 + θ)(1 − α2

12). (100)

The temperature ratio γ = T1/T2 can be obtained from Relationship (48), where ζ∗2 must be
replaced by ϵ∗22 and ζ∗1 is also given by Equation (49).
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As in the case of the excess granular gas, one can obtain the explicit form of the
velocity distribution function f1(V). By following similar mathematical steps as those
made before for the distribution f2(V), the distribution f1(V) for d = 3 can be written as
f1(V) = n1(2T2/m2)

−d/2 φ1(c), where the scaled distribution φ1(c) is as follows:

φ1(c) = π−d/2(1 + α12)ν
∗
12θd/2

12

∫ ∞

0
ds e−ω∗

12s exp
[
− θ12e2ϵ∗12s

(
c2 + 4a∗scxcy + 4a∗2s2c2

y

)]
, (101)

where ω∗
12 = ω12/ν22 = (1 + α22)ν

∗
12 − 3ϵ∗12, θ12 = µ/γ12, and γ12 = T12/T2 =

γ + 2µ12µ21(1 − γ). Here, µ = m1/m2 is the mass ratio. The corresponding marginal
distribution

φ1,x(cx) =
∫ +∞

−∞
dcy

∫ +∞

−∞
dcz φ1(c) (102)

for d = 3 is

φ1,x(cx) = π−1/2(1 + α12)ν
∗
12θ1/2

12

∫ ∞

0
ds

e−[(1+α12)ν
∗
12−ϵ∗12]s√

1 + 4a∗2s2
exp

(
− θ12e2ϵ∗12s c2

x
1 + 4a∗2s2

)
. (103)

For elastic collisions (α22 = α12 = 1), ϵ∗12 = 0, a∗ = 0, γ = 1, and so φ1,x(cx) reduces
to the equilibrium distribution φel

1,x(cx) = π−1/2µ1/2e−µc2
x . The dependence of the ratio

R1,cx (cx) = φ1,x(cx)/φel
1,x(cx) on cx is plotted in Figure 2 for m1/m2 = σ1/σ2 = 0.5. As for

the granular gas, we observe that the deviation of R1,cx (cx) from 1 is more noticeable as the
inelasticity in collisions increases.
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R
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x
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α = 0.5
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Figure 2. Plot of the ratio R1,cx (cx) = φ1,x(cx)/φel
1,x(cx) obtained by means of the VGS kinetic model

vs the (scaled) velocity cx for m1/m2 = σ1/σ2 = 0.5, and three different values of the (common)
coefficient of restitution α22 = α12 = α:α = 0.9, 0.7, and 0.5.

In the sheared diffusion problem, the first-order distribution function f (1)1 obeys the

kinetic Equation (61), except that JIMM
12 [ f (0)1 , f (1)2 ] → K12[ f (0)1 , f (1)2 ] = 0 and the Boltzmann–

Lorentz collision operator JIMM
12 [ f (1)1 , f (0)2 ] must be replaced by the following operator:

K12[ f (1)1 , f (0)2 ] = −1 + α12

2
ν12

(
f (1)1 − f (1)12

)
+

ϵ12

2

( ∂

∂c
· c f (1)1 − j(1)1

ρ1
· ∂

∂c
f (0)1

)
, (104)

where

f (1)12 (c) =
µ12

n1T12
c · j(1)1 f (0)12 (c), f (0)12 (c) = n1

(
m1

2πT12

)d/2
exp

(
− m1

2T12
c2
)

. (105)
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With these replacements, it is easy to see that the diffusion transport coefficients of the VGS
kinetic model are the solutions of the algebraic Equations (78)–(80) except that Ω must be
replaced by the following expression:

Ω′ =
1 + α12

2
µ21ν12. (106)

Note that in Equations (78)–(80), the derivatives of the pressure tensors P∗
2,kℓ and P∗

1,kℓ with
respect to a∗ in the steady state obtained from the kinetic model differ from those obtained
from the IMM and IHS. These derivatives are also displayed in the Appendix B.

6. Comparison with the Boltzmann Results for IHS
In this section, we want to compare the results obtained from both the Boltzmann

equation for the IMM and the VGS kinetic model with those previously derived from
the IHS [54,55]. In dimensionless form, the rheological properties and the diffusion coef-
ficients of the system (granular gas plus tracer particles) depend on five quantities: the
diameter σ1/σ2 and mass m1/m2 ratios, the coefficients of restitution α22 and α12, and the
dimensionality d of the system. Thus, given that the parameter space of the system is
large, henceforth we consider a three-dimensional gas (d = 3) and a common coefficient
of restitution α22 = α12 ≡ α. This reduces the parameter space to three quantities: σ1/σ2,
m1/m2, and α.

6.1. Rheological Properties

First, we consider the rheological properties. In the case of the excess granular gas,
Figure 3 shows P∗

2,kℓ versus α22. We have also included computer simulation results [79]
obtained by numerically solving the (inelastic) Boltzmann equation for IHS by means of
the direct simulation Monte Carlo (DSMC) method [53]. Comparing the three approaches,
we see that the quantitative discrepancies between the VGS model’s theoretical predictions
and the approximate IHS results are larger than those found for the IMM results. In fact,
the theoretical results for IHS and IMM disagree very little; this difference increases slightly
with inelasticity. Additionally, we observe excellent agreement between the Boltzmann
theory for both interaction models and Monte Carlo simulations, even in the case of strong
dissipation. Similar conclusions are reached for the reduced pressure tensor, P∗

1,kℓ. Figure 4
illustrates this behavior, showing the dependence of P∗

1,kℓ on α for the case σ1/σ2 = 1
and m1/m2 = 0.5. The good agreement between the IHS and IMM results is apparent
again, especially in the case of the shear stress P∗

1,xy, which is the most relevant rheological
property in a shear flow problem as it defines the non-Newtonian shear viscosity. Although
the VGS model predictions are good qualitatively, they exhibit larger discrepancies with
the IHS results than the IMM predictions.

6.2. Tracer Diffusion Tensors

We analyze now the dependence of the diffusion coefficients Tkℓ ≡
{

Dkℓ, Dp,kℓ, DT,kℓ

}
on the (common) coefficient of restitution α. According to the results derived in
Sections 4 and 5, Txz = Tzx = Tyz = Tzy = 0 in agreement with the symmetry of the
shearing field applied to the system. Thus, in a three-dimensional gas, there are five rele-
vant elements of the tensors Tkℓ: the three diagonal (Txx, Tyy, and Tzz) and two off-diagonal
elements (Txy and Tyx). The results obtained here for the IMM and from the kinetic model
show that in general Txx ̸= Tyy = Tzz and Txy ̸= Tyx. However, in the case of IHS, the
approximate results derived in [55] show that Tyy ̸= Tzz although the difference between
both elements is in general very small. As previously mentioned, the diagonal elements, Tkk,
can be considered generalizations of the conventional Navier–Stokes diffusion transport
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coefficients because they reduce to the conventional coefficients for elastic gases (which
is equivalent to zero shear rate in the steady USF state). The off-diagonal elements, Txy

and Tyx, can be seen as generalizations of the Burnett transport coefficients because they
account for cross transport effects appearing in far-from-equilibrium states.
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Figure 3. Plot of the (reduced) elements of the pressure tensor P∗
2,kℓ as functions of the coefficient of

restitution α22 for a three-dimensional single gas. The solid lines are the approximate results derived
for IHS from the leading Sonine approximation, the dashed lines correspond to the results obtained
for IMM, and the dotted lines refer to the results of the VGS kinetic model. Symbols are the Monte
Carlo simulations for IHS obtained in [79].
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Figure 4. Plot of the (reduced) elements of the pressure tensor P∗
1,kℓ as functions of the (common)

coefficient of restitution α22 = α12 ≡ α for a three-dimensional single system (d = 3) in the case
σ1/σ2 = m1/m2 = 0.5. The solid lines are the approximate results derived for IHS from the leading
Sonine approximation, the dashed lines correspond to the results obtained for IMM, and the dotted
lines refer to the results of the VGS kinetic model.

Given that, in this paper, we are interested in assessing the dependence of the co-
efficients Tkℓ on inelasticity, we have scaled them with respect to their elastic values
except in the case of DT,kℓ since this coefficient vanishes for elastic collisions. Thus,
we define the dimensionless coefficients D∗

kℓ = Dkℓ/Del and D∗
p,kℓ = Dp,kℓ/Del

p , while
D∗

T,kℓ = DT,kℓ/(x1T/m2ν). The effective collision frequency ν = νM,22 for IMM, ν = ν22 for
the VGS model, and ν = (2/(d + 2))νM,22 for IHS.

Before considering the general case, we will first study the self-diffusion problem,
i.e., when the tracer and the particles of the granular gas are mechanically equivalent. As
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stated in Section 4, in this case, Dp,kℓ = DT,kℓ = 0 and the self-diffusion tensor is given
by Equation (89). The dependence of the nonzero elements of the (reduced) self-diffusion
tensor Dself∗

kℓ on the (common) coefficient of restitution α is plotted in Figure 5. The self-
diffusion problem involves only single-particle motion and it is therefore somewhat simpler
to compute the diffusion coefficients. In particular, the granular temperature T2 is the same
as that of the tracer particles T1. We observe that the deviation from the functional form
for elastic collisions is in general quite significant, even for moderate dissipation. With
respect to the comparison between IHS, IMM and VGS results, we observe good qualitative
agreement between the three models. At a quantitative level, however, we find good
agreement for the yy and yx elements, but more significant differences are observed for the
xx and xy elements. In this latter case, the VGS results are closer to the IHS results than the
IMM results for the xx element, but the opposite happens for the xy element.
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Figure 5. Plot of the (reduced) elements of the self-diffusion tensor Dself∗
xx , Dself∗

yy , Dself∗
zz , Dself∗

xy , and
Dself∗

yx as functions of the (common) coefficient of restitution α22 = α12 = α for a three-dimensional
system in the case σ1/σ2 = m1/m2 = 1. The solid lines are the approximate results derived for IHS
from the leading Sonine approximation, the dashed lines correspond to the results obtained for IMM,
and the dotted lines refer to the results of the VGS kinetic model. Note that Dself∗

p,yy = Dself∗
p,zz in the

results obtained from IMM and the kinetic model.

As previously mentioned, some studies [59,61] have performed molecular dynamics
simulations to measure the non-zero elements of the self-diffusion tensor. As discussed
in [54], the densities analyzed in these simulations generally prevent us from making
quantitative comparisons between our theory, which is limited to the low-density regime,
and these computer simulations. However, we find that the qualitative dependence of
the self-diffusion tensor on dissipation generally agrees with the results derived from
IMM and VGS models. These simulations study the α-dependence of the reduced tensor
D̃kℓ = Dself∗

kℓ /a∗. Kinetic theory and simulations predict that D̃xx > D̃zz > D̃yy, while, in
general, the elements D̃kℓ decrease with increasing dissipation. However, the simulations
show that the value of the off-diagonal element −D̃xy is roughly the same magnitude as
that of the diagonal element D̃yy. Our results disagree with this prediction.

Now, we assume that the tracer and particles of the granular gas are mechanically
different. The relevant elements of D∗

kℓ, D∗
p,kℓ, and D∗

T,kℓ are plotted in Figures 6, 7 and 8,
respectively, as functions of α for the mixture σ1/σ2 = 1 and m1/m2 = 0.5. As occurs
for the self-diffusion tensor, we observe that in general the influence of inelasticity on
mass transport is quite significant regardless of the approximation used. Additionally,
the anisotropy of the system (as measured by the differences |Txx − Tyy| and |Tzz − Tyy|)
is much important in the shear flow xy-plane. In fact, while Tzz − Tyy = 0 for IMM and

https://doi.org/10.3390/math14010179

https://doi.org/10.3390/math14010179


Mathematics 2026, 14, 179 25 of 42

kinetic model results, we observe that Tzz ≃ Tyy for IHS. With respect to the comparison
between IHS, IMM, and kinetic model, it is quite apparent that although the predictions of
the kinetic model reproduce qualitatively well the results obtained for IHS, discrepancies
between both approaches are found for strong dissipation. As occurs for the rheology, the
agreement between the IMM and IHS is better than the one found between IHS and the
kinetic model. In fact, the good agreement obtained here between IHS and IMM can justify
the use of the IMM as a reliable model to unveil in a clean way the effect of inelasticity on
transport in real granular flows.
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Figure 6. Plot of the (reduced) elements D∗
xx, D∗

yy, D∗
zz, D∗

xy, and D∗
yx as functions of the (common)

coefficient of restitution α for a three-dimensional system in the case σ1/σ2 = 1 and m1/m2 = 0.5. The
solid lines are the approximate results derived for IHS from the leading Sonine approximation, the
dashed lines correspond to the results obtained for IMM, and the dotted lines refer to the results of the
VGS kinetic model. Note that D∗

yy = D∗
zz in the results obtained from the IMM and the kinetic model.
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Figure 7. Plot of the (reduced) elements D∗
p,xx, D∗

p,yy, D∗
p,zz, D∗

p,xy, and D∗
p,yx as functions of the

(common) coefficient of restitution α for a three-dimensional system in the case σ1/σ2 = 1 and
m1/m2 = 0.5. The solid lines are the approximate results derived for IHS from the leading Sonine
approximation, the dashed lines correspond to the results obtained for IMM, and the dotted lines
refer to the results of the VGS kinetic model. Note that D∗

p,yy = D∗
p,zz in the results obtained from

IMM and the kinetic model.
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Figure 8. Plot of the (reduced) elements D∗
T,xx, D∗

T,yy, D∗
T,zz, D∗

T,xy, and D∗
T,yx as functions of the

(common) coefficient of restitution α for a three-dimensional system in the case σ1/σ2 = 1 and
m1/m2 = 0.5. The solid lines are the approximate results derived for IHS from the leading Sonine
approximation, the dashed lines correspond to the results obtained for IMM, and the dotted lines
refer to the results of the VGS kinetic model. Note that D∗

T,yy = D∗
T,zz in the results obtained from

IMM and the kinetic model.

To more clearly quantify the deviations between the results derived from IMM, VGS,
and IHS, we define the following differences: ∆∗

ij = D∗
ij − D∗IHS

ij , ∆∗
p,ij = D∗

p,ij − D∗IHS
p,ij , and

∆∗
T,ij = D∗

T,ij − D∗IHS
T,ij . Here, D∗

ij, D∗
p,ij, and D∗

T,ij refer to the results obtained from IMM
and the VGS kinetic model. Figures 9–11 show the dependence of the above differences
on α for IMM (panel (a)) and VGS (panel (b)). We have considered two different mixtures:
m1/m2 = 0.25 and σ1/σ2 = 0.5 and m1/m2 = 0.25 and σ1/σ2 = 1.5. For concreteness,
we have studied the elements xy, yx and yy of the above differences. As expected, we
observe that the differences between IHS and IMM (and/or VGS) generally increase with
inelasticity. These differences decrease as the diameter ratio σ1/σ2 increases (namely, as the
tracer becomes larger than the particles of the granular gas). Depending on the element of
∆∗

ij, ∆∗
p,ij, and ∆∗

T,ij considered, the agreement between the IMM and IHS results is better
or worse than those obtained from the VGS model. For example, at a diameter ratio of
σ1/σ2 = 1.5 and a (common) coefficient of restitution of α = 0.5, the relative differences
between the IMM and IHS results for the tracer diffusion coefficient elements D∗

xy, D∗
yx,

and D∗
yy are about 11%, 32%, and 2%, respectively. The differences between the VGS and

IHS results are about 15%, 3%, and 6% for the elements xy, yx, and yy, respectively.
Finally, to assess the impact of particle size distribution on diffusion, we consider a

mixture with m1/m2 = 0.5 and two different diameter ratios. For clarity, Figure 12 shows
only the elements of the tracer diffusion tensor, which is the most relevant quantity in a
diffusion problem. As before, the IMM results compare better with the IHS results than
with those obtained from the VGS model.
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Figure 9. Panel (a): Plot of the dimensionless quantities ∆∗
ij = D*IMM

ij − D∗IHS
ij as functions of the

(common) coefficient of restitution α for m1/m2 = 0.25 and two different values of the diameter ratio:
σ1/σ2 = 0.5 (solid lines) and σ1/σ2 = 1.5 (dash-dotted lines). We have considered the elements xy,
yx and yy of IMM. Panel (b): The same as for the panel (a) for the results obtained from the VGS
kinetic model.
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Figure 10. Panel (a): Plot of the dimensionless quantities ∆∗
p,ij = D∗IMM

p,ij − D∗IHS
p,ij as functions of the

(common) coefficient of restitution α for m1/m2 = 0.25 and two different values of the diameter ratio:
σ1/σ2 = 0.5 (solid lines) and σ1/σ2 = 1.5 (dash-dotted lines). We have considered the elements xy,
yx and yy of IMM. Panel (b): The same as for the panel (a) for the results obtained from the VGS
kinetic model.
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Figure 11. Panel (a): Plot of the dimensionless quantities ∆∗
T,ij = D∗IMM

T,ij − D∗IHS
T,ij as functions of the

(common) coefficient of restitution α for m1/m2 = 0.25 and two different values of the diameter ratio:
σ1/σ2 = 0.5 (solid lines) and σ1/σ2 = 1.5 (dash-dotted lines). We have considered the elements xy,
yx and yy of IMM. Panel (b): The same as for the panel (a) for the results obtained from the VGS
kinetic model.
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Figure 12. Panel (a): Plot of the (reduced) elements D∗
xy, D∗

yx, and D∗
yy as functions of the (common)

coefficient of restitution α for a three-dimensional system for m1/m2 = 0.5 and σ1/σ2 = 0.25. The
solid lines correspond to the IHS results, the dashed lines refer to IMM results and the dotted lines are
for the VGS results. Panel (b): The same as for the panel (a) for the case m1/m2 = 0.5 and σ1/σ2 = 0.5.
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7. Thermal Diffusion Segregation
The knowledge of the diffusion transport coefficients allows us to apply the present

theoretical results to the problem of segregation of tracer particles in a sheared granular gas.
Segregation of dissimilar species in a granular mixture is likely one of the most relevant
problems in granular flows not only from a fundamental point of view, but also from a
more practical perspective. The problem has already been studied in the context of IHS [80].
Our objective here is to revisit the problem by employing the results derived for IMM and
from the VGS kinetic model.

One of the most well-known examples of size segregation in vertically vibrated mix-
tures is the Brazil-nut effect (BNE), in which a relatively large particle attempts to move
to the top of the sample against gravity [81–83]. In addition, the reverse Brazil-nut ef-
fect (RBNE) has been observed in some experiments [84,85]. Several mechanisms (void
filling [81], convection [82], arching [83]) have been proposed to explain the BNE/RBNE
transition. Aside from these mechanisms, thermal diffusion becomes most relevant in
strongly shaken or sheared granular systems, as the motion of grains in these systems is
similar to the chaotic motion of atoms or molecules in an ordinary gas.

Thermal diffusion (or thermophoresis) is one of the most extensively studied phe-
nomena in ordinary gases and liquids [86,87]. Thermal diffusion refers to the transport
of matter due to the presence of a thermal gradient. This motion generates concentration
gradients in the system, resulting in diffusion in the mixture. After a transient regime, the
system reaches a steady state in which the separation effect arising from thermal diffusion
is balanced by pure diffusion. The existence of these competing mechanisms results in the
segregation (or partial separation) of the mixture’s different species.

Although the study of segregation by thermal diffusion in granular mixtures using
kinetic theory tools (see, for example, Refs. [5,12]) in the Navier–Stokes domain is well-
established, much less is known about sheared granular mixtures. One reason is that a
complete description of the segregation problem in sheared systems requires introducing
a thermal diffusion tensor to characterize segregation in different directions. This is a
consequence of cross-effects appearing in mass transport when the system is under USF.
Here, as in [80], for the sake of simplicity we consider a situation where the temperature
gradient is perpendicular to the shear flow plane. Thus, for a three-dimensional system,
∂xT = ∂yT = 0 but ∂zT ̸= 0. Additionally, since we are interested in a situation where the
hydrodynamic Equations (51)–(53) admit a steady solution, we also assume that δU = 0.
Under these conditions, the amount of segregation parallel to the z-axis can be measured
by the thermal diffusion factor Λz defined as follows:

−Λz
∂ ln T

∂z
=

∂ ln x1

∂z
. (107)

Let us assume that the thermal gradient is directed downwards (∂zT < 0). In this case, when
Λz > 0, according to Equation (107), then ∂z ln x1 > 0. This means that in this case the tracer
particles tend to accumulate near the cold wall. On the other hand, when Λz < 0, the tracer
particles tend to move towards the hot wall since ∂z ln x1 < 0. In other words, the signature of
Λz provides a segregation criterion for the tracer particles immersed in a sheared granular gas.

Let us write Λz in terms of the pressure tensors Pzz and P1,zz as well as the diffusion
coefficients Dzz, Dp,zz and DT,zz. First, when only gradients along the z-axis exist, the
momentum balance Equation (52) yields the following:

∂Pzz

∂z
= 0. (108)

Since Pzz = pP∗
zz(a∗), the following is observed:
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∂Pzz

∂z
=

∂p
∂z

(1 − a∗∂a∗)P∗
zz +

p
2T

∂T
∂z

a∗(∂a∗P∗
zz), (109)

where ∂a∗P∗
zz = ∂a∗P∗

yy ≡ Υyy is given by Equation (A26). Using Equations (108) and (109),
one gets a relationship between ∂z p and ∂zT:

∂ ln p
∂z

= −1
2

a∗(∂a∗P∗
zz)

P∗
zz − a∗(∂a∗P∗

zz)

∂ ln T
∂z

. (110)

In addition, according to the balance Equation (51), in the steady state with δU = 0 then
j(1)1,z = 0. The constitutive equation for j(1)1,z is as follows:

j(1)1,z = −m1Dzz∂zx1 −
m2

T
Dp,zz∂z p − ρ

T
DT,zz∂zT. (111)

The condition j(1)1,z = 0 leads to

∂ ln x1

∂z
= − ρ

m1x1

(
Dp,zz

Dzz

∂ ln p
∂z

+
DT,zz

Dzz

∂ ln T
∂z

)
= −

[
(1 − µ)

D∗
p,zz

D∗
zz

∂ ln p
∂z

+ Ωel∗ D∗
T,zz

D∗
zz

∂ ln T
∂z

]
. (112)

Here, we recall that µ = m1/m2 is the mass ratio and Ωel∗ = Ωel/ν, where Ωel is defined
by Equation (85) and the value of ν depends on the approach followed.

From Equations (110) and (112) one easily gets the expression of the thermal diffusion
factor Λz as follows:

Λz =
Ωel∗D∗

T,zz − 1
2 (1 − µ)a∗Υyy

(
P∗

zz − a∗Υyy
)−1D∗

p,zz

D∗
zz

. (113)

The condition Λz = 0 gives the criterion for the upwards/downwards segregation transition.
According to Equation (87) the diffusion coefficient D∗

zz is positive. As a consequence,
the marginal segregation curve (Λz = 0) is obtained from the following condition:

Ωel∗D∗
T,zz −

1
2
(1 − µ)a∗Υyy

(
P∗

zz − a∗Υyy
)−1D∗

p,zz = 0. (114)

According to Equation (114), there are clearly several competing mechanisms in
thermal diffusion segregation. First, since the granular gas is in a far-from-equilibrium state,
P∗

zz differs from 1 and the derivative Υyy differs from 0. Second, the forms of the diagonal
elements D∗

T,zz and D∗
p,zz differ from their corresponding elastic forms. These deviations

essentially arise from the fact that the reference shear flow state of the tracer particles being
completely different from that of the granular gas particles. Notably, energy equipartition
breaks down since the tracer temperature T1 differs from the granular temperature T2 ≃ T.
This effect has a significant impact on granular segregation.

7.1. Some Limiting Cases

Before considering the general case, it is convenient to consider some simple cases.
First, for elastic collisions (α22 = α12 = 1), D∗

T,zz = 0 and Equation (41) for the IMM or
Equation (91) for the VGS kinetic model yields a∗ = 0. Thus, the condition (114) is trivially
satisfied for any value of the mass and diameter ratios. This means that no segregation
occurs in this limiting case as expected.

Another interesting case refers to a granular mixture constituted by mechanically
equivalent species. In this situation, although the collisions are inelastic, D∗

p,kℓ = D∗
T,kℓ = 0.

This means that Λz = 0 for any value of the coefficient of restitution. This is the expected
result since both species are indistinguishable.
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7.2. General Case

For inelastic collisions, the zero contour of Λz exhibits a complex nonlinear dependence
on the parameter space of the system. Thus, as we did in Section 6, for simplicity, we take a
three-dimensional granular gas (d = 3) in the case of a common coefficient of restitution
(α22 = α12 ≡ α). The marginal segregation curve Λz = 0 separates regions of Λz > 0
(upwards segregation) and Λz < 0 (downwards segregation). At a fixed value of α, the
points lying on the zero contour correspond to values of the diameter and mass ratios for
which the intruder does not segregate in a sheared granular gas.

As an illustration, Figure 13 shows the phase diagram in the (σ1/σ2, m1/m2)-plane for
two different values of the (common) coefficient of restitution α. We compare the theoretical
predictions for the marginal segregation curve Λz = 0 obtained previously for IHS in [80] with
those derived here for IMM and from the VGS kinetic model. As previously mentioned, all
curves pass through the point (1, 1) because it corresponds to the limiting case of mechanically
equivalent particles. The three approaches show that, for σ1 < σ2, the main effect of inelasticity
(or equivalently, the reduced shear rate a∗) is to enlarge the size of the downwards segregation
region. The opposite occurs when the tracer particles are larger than the particles of the granular
gas. In general, we see that the tracer particles tend to move toward hotter regions since upwards
segregation occupies most of the system’s parameter space. Additionally, the results obtained
here for sheared granular gases differ qualitatively from the segregation results obtained for
systems with no shear (i.e., vibrated dense systems). In the latter case, segregation tends to
predominantly be of the downward type as the size of the tracer particles increases. This is in
fact the opposite behavior observed here for strongly sheared granular gases.
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Figure 13. (a) Phase diagram for segregation in the {σ1/σ2, m1/m2} plane for a three-dimensional
system (d = 3) with α = 0.9. (b) Phase diagram for segregation in the {σ1/σ2, m1/m2} plane for a
three-dimensional system (d = 3) with α = 0.8.
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Regarding the comparison of the three approaches of Figure 13, the results derived
from the IMM qualitatively agree well with the IHS results. Surprisingly, however, the
segregation results obtained from the VGS model agree better with the IHS results than
with the IMM results. This good agreement is especially noticeable when σ1 > σ2.

8. Discussion
In this paper, we have analyzed the diffusion of tracer particles immersed in a sheared

granular gas. Under these conditions, the mass flux j(1)1 is defined in terms of the tracer

diffusion tensor Dkℓ (which couples j(1)1 with the concentration gradient ∇x1), the pressure

diffusion tensor Dp,kℓ (which couples j(1)1 with the pressure gradient ∇p), and the thermal

diffusion tensor DT,kℓ (which couples j(1)1 with the temperature gradient ∇T). These
tensorial quantities were evaluated years ago in the context of the Boltzmann equation
for IHS [54,55]. However, due to the intricate mathematical structure of the Boltzmann
collision operator for IHS, the results obtained in Refs. [54,55] involve several (uncontrolled)
approximations at different stages of the derivation. Here, we revisit this problem by
considering two different, complementary approaches that allow us to achieve exact results.
First, we maintain the structure of the Boltzmann collision operators but consider a different
interaction model: the so-called IMM, in which the collision rate of colliding spheres
is independent of their relative velocity. This simplification enables us to obtain exact
expressions for the rheological properties of the system (granular gas plus tracer particles),
as well as the diffusion tensors. As a second approach, we keep the IHS interaction model
but replace the true Boltzmann collision operators with simpler mathematical terms that
retain their relevant physical properties. In this context, we consider the VGS kinetic
model [36] proposed years ago for granular mixtures.

As in [55] for IHS, the diffusion tensors are obtained by solving the Boltzmann equa-
tion (or the VGS model) for tracer particles using a generalization of the Chapman–Enskog
method [6] for far-from-equilibrium states. Since the granular gas is subjected to a strong
shear rate, non Newtonian effects are relevant for finite inelasticity. Thus, the reference
state (the zeroth-order distribution f (0)1 ) in the perturbation method is the shear flow distri-
bution, not the local equilibrium distribution. Additionally, since collisional cooling cannot
compensate for viscous heating locally, f (0)1 is, in general, a time-dependent distribution
even when the gas is slightly perturbed from the USF. Once the linear integral equations
verifying the diffusion tensors are obtained, we restrict to steady-state conditions and, so,
the reduced shear rate a∗ is coupled to the coefficient of restitution α22 which characterizes
the inelasticity of grain-grain collisions. The consideration of the steady state allows us
to achieve analytical, exact expressions for Dkℓ, Dp,kℓ, and DT,kℓ. These tensors depend
nonlinearly on the diameter ratio, σ1/σ2, the mass ratio, m1/m2, and the coefficients of
restitution α22 and α12 (which characterize the inelasticity of tracer-grain collisions).

The results obtained from the IMM and VGS models for the diffusion tensors show
that the non-zero elements of these tensors depend intricately on the coefficients of resti-
tution α22 and α12, as well as on the masses and diameters of the mixture. According to
Equations (78)–(80), we can conclude that the deviations of the coefficients (Dij, Dp,ij, DT,ij)

from their elastic values are due to three main reasons. First, the shear field alters the conven-
tional collision frequency of the elastic diffusion coefficient Ωel (defined by Equation (85))
by the tensor aij + Ωij, where Ωij = Ωδij for IMM and Ωij = Ω′δij for the VGS kinetic
model. Second, since the tracer and granular gas particles are generally mechanically
different, their corresponding rheological properties differ as well. This feature gives rise
to the presence of the tracer pressure tensor P(0)

1,kℓ instead of P(0)
2,kℓ in Equation (78) for Dij

and the terms of the form (m1/m2)P(0)
1,kℓ − P(0)

2,kℓ in Equations (79) and (80), which define the
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tensors Dp,ij and DT,ij, respectively. Third, the USF state is inherently non-Newtonian; so,
there is a coupling between the coefficients Dp,ij and DT,ij. Since the (reduced) shear rate a∗

(which measures the departure of the system from equilibrium) is coupled to the coefficient
of restitution α22 via Equation (42), the above three effects disappear when the collisions
are elastic.

A comparison of the exact theoretical results of the IMM and VGS models with the
approximate IHS results generally shows good qualitative agreement. At a more quantita-
tive level, we observe excellent agreement in some cases (e.g., rheological properties) and
reasonably good agreement in others (e.g., diffusion tensors), especially in the case of IMM.
It is quite apparent that to confirm the reliability of the predictions offered by IMM and
VGS model for the tracer diffusion coefficients one should compare them with computer
simulation results for IHS. At the level of rheology, the results reported here (see Figure 3)
and in [1] for a binary mixture of IMM under USF clearly demonstrate the accuracy of this
interaction model to capture the dependence of the pressure tensors on the coefficients
of restitution.

To complement this analysis, we have also addressed the sensitivity of the tracer
diffusion transport coefficients (D∗

ij, D∗
T,ij, D∗

p,ij) to the system parameters:

{α12, α22, m1/m2, σ1/σ2, d}.

Since the space parameter of the system (granular gas plus tracer particles) is relatively
high, we have considered a three-dimensional (d = 3) system with a common coefficient of
restitution α22 = α12 ≡ α, to gain insight into the general problem. In this case, the diffusion
coefficients depend on three independent parameters: the mass and diameter ratios, and
the (common) coefficient of restitution. Although the highly nonlinear dependence of these
transport coefficients on the aforementioned quantities makes it challenging to isolate the
influence of each parameter, our results identify the dominant trends. As for the (common)
coefficient of restitution α, Figures 6–8 show the correspondence between a higher degree
of inelasticity (stronger anisotropy) and the exacerbation of the quantitative differences
among the interaction models considered. Additionally, we find that departures of the
diffusion coefficients from their elastic functional forms are generally substantial, even
when the level of dissipation is only moderate. Regarding the influence of the diameter
ratio for fixed values of α and mass ratio m1/m2, Figures 9–11 show that the discrepancies
between IHS and IMM (and/or VGS) tend to decrease as the tracer particles become larger
than those of the granular gas (i.e., when σ1/σ2 increases). While no universal hierarchy
can be established concerning the relative accuracy of the exact VGS and IMM results
compared to the approximated IHS results, the latter generally exhibits a closer agreement
with IHS in the majority of the cases studied in this paper.

As a suitable application of the results exposed in this paper, the segregation of
tracer particles in a sheared granular gas has been analyzed. The relative motion of the
tracers with respect to the particles of the gas is caused by the presence of a temperature
gradient. Here, for the sake of simplicity, we have assumed that the thermal gradient
∂zT is perpendicular to the shear flow xy-plane. Under these conditions, the amount of
segregation in the z-direction is measured by the thermal diffusion factor Λz, defined in
Equation (107). The condition of zero thermal diffusion (Λz = 0) gives the segregation
criterion for the transition from upwards segregation (regions where Λz > 0) to downwards
segregation (regions where Λz < 0). A comparison with previous results obtained for
IHS [80] (see Figure 13) shows reasonable agreement in general, especially for the VGS
model when the tracer particles are larger than the granular gas particles.

Beyond the comparison among the results offered by the different interaction models
for segregation, the sensitivity of the segregation criterion (114) to the mechanical properties
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is also explicitly captured in the phase diagrams derived in Section 7. In this regard, both
the mass m1/m2 and diameter σ1/σ2 ratios act as the critical factors governing the sign
of the thermal diffusion factor Λ at fixed α. For σ1 < σ2, a higher degree of inelasticity
tends to enlarge the size of the downwards segregation region, while the opposite occurs
when σ1 > σ2. Concurrently, a lower value of the (common) coefficient of restitution α is
usually associated with an expansion of the region in which tracer particles with a mass
ratio m1/m2 > 1 segregate downward, as shown by Figure 13.

As said before, a more quantitative comparison between the theoretical results derived
here for IMM and VGS with those obtained by molecular dynamics or Monte Carlo (DSMC)
simulations would allow us to gauge the reliability of the present results. However, we
are not aware of any work in the granular literature where the diffusion coefficients of
tracer particles immersed in a strongly sheared dilute gas have been measured. Thus, the
lack of simulation data for the diffusion coefficients in the low-density regime prevents a
comparison between theory and simulation. However, as mentioned throughout this paper,
previous papers [59,61] have analyzed the α-dependence of the self-diffusion tensor for
very dense systems. The density range examined in these papers precludes a quantitative
comparison. We hope that this paper will encourage simulators to perform simulations
under shear conditions similar to those considered here to confirm the theoretical results
displayed in this paper. In particular, one could perform Monte Carlo simulations in a
sheared granular mixture by following Campbell’s strategy [59] for computing the self-
diffusion tensor using particle tracking and velocity correlations.

Conclusions

In conclusion, the results found here give evidence of the accuracy of both the IMM and
the VGS kinetic model for studying far-from-equilibrium situations in granular flows, where
using the original Boltzmann equation for IHS is found to be quite intricate. Additionally,
using a kinetic model instead of the Boltzmann equation for the IHS and/or IMM allows
us to obtain the explicit forms of the velocity distribution functions. This is likely one
of the main advantages of starting from a kinetic model rather than the true Boltzmann
kinetic equation. In particular, as a future project, we plan to use the VGS kinetic model
to determine the shear-rate-dependent tracer diffusion coefficients in a sheared granular
suspension (namely, a granular gas immersed in a molecular gas).
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Appendix A. Linear Stability Analysis of the Steady-State Solutions
to USF

In this appendix, we aim to determine whether the steady-state solutions (40)–(49) to
the pressure tensors are (linearly) stable. We first consider the time evolution equation for
the pressure tensor of the excess granular gas. The three relevant independent equations
for P2,kℓ are given by:

∂t p + ζ2 p +
2a
d

P2,xy = 0, ∂tP2,xy + νη P2,xy + aP2,yy = 0, (A1)

∂tP2,yy + νη P2,yy −
(
νη − ζ2

)
P2,yy = 0, (A2)

where νη = νM,22ν∗η and p ≃ p2 = n2T2. In terms of the dimensionless quantities, P∗
2,kℓ(t) =

P2,kℓ(t)/n2T(t), a∗(t) = a/νM,22(t) and

τ(t) =
∫ t

0
dt′ νM,22(t′), (A3)

Equations (A1) and (A2) become

2∂τ ln a∗ = ζ∗2 +
2
d

a∗P∗
2,xy, (A4)

∂τ P∗
2,xy = −a∗P∗

2,yy − P∗
2,xy

(
ν∗η − ζ∗2 −

2
d

a∗P∗
2,xy

)
, (A5)

∂τ P∗
2,yy = −P∗

2,yy

(
ν∗η − ζ∗2 −

2
d

a∗P∗
2,xy

)
+ ν∗η − ζ∗2 , (A6)

The variable τ is the dimensionless time measured as the average collision number. A
steady solution of Equations (A4)–(A6) is given by Equations (40) and (41). To carry out a
linear stability analysis of these steady solutions, we look for solutions to the set (A4)–(A6)
given by

a∗(τ) = a∗s + δa∗(τ), P∗
2,xy(τ) = P∗

2xy,s + δP∗
2,xy(τ), P∗

2,yy(τ) = P∗
2yy,s + δP∗

2,yy(τ), (A7)

where the subscript s means that the quantities are evaluated in the steady state. Substi-
tuting the identities (A7) into Equations (A4)–(A6) and neglecting nonlinear terms in the
perturbations, one gets:

∂τ

 δa∗s
δP∗

2,xy

a∗s δP∗
2,yy

 = −L ·

 δa∗

δP∗
2,xy

a∗s δP∗
2,yy

, (A8)

where L is the square matrix, as follows:

L =


ζ∗2
2 − ζ∗2 ν∗2

η

2(ν∗η−ζ∗2 )
0(

ν∗η−ζ∗2
ν∗η

)2
ν∗η + ζ∗2 1

(ν∗η−ζ∗2 )ζ
∗
2

ν∗η
−ζ∗2 ν∗η ν∗η

. (A9)

The time evolution of the deviations from the steady solution is governed by the three
eigenvalues of the matrix L. If the real parts of those eigenvalues are positive the steady
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solution is linearly stable, while it is unstable otherwise. The eigenvalues are determined
from the solution of the following secular equation:

det(Lkℓ − ℓδkℓ) = 0. (A10)

The solution to Equation (A10) leads to a real eigenvalue ℓ1 and a pair of complex conjugate
eigenvalues ℓ2 and ℓ3. As regards IHS, the results show that Re(λi) > 0 (i = 1, 2, 3) for any
value of α22. This means that the steady USF solution for the excess granular is linearly
stable, and the characteristic relaxation time (measured by the number of collisions) is ℓ−1

1 .
As an illustration, Figure A1 shows the dependence of ℓ1 and of the real part of ℓ2,3 for a
three-dimensional granular gas (d = 3). Note that ℓ1 → 0 in the elastic limit α22 → 1. This
is a consequence that for elastic collisions a∗ → 0.
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α22
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Figure A1. Plot of the eigenvalue ℓ1 and of the real part of ℓ2,3 as a function of the coefficient of
restitution α22 for a three-dimensional system.

We consider now the (linear) stability of the steady solution to the set of time evolution
equations associated with γ(t), P1,xy(t) and P1,yy(t). Since we have previously shown that
the perturbations (δa∗, δP∗

2,xy, δP∗
2,yy) tend to zero for sufficiently long times, we assume

hence that a∗ ≡ const., P∗
2,xy ≡ const. and P∗

2,yy ≡ const. in the evolution equations of γ(t),
P1,xy(t) and P1,yy(t). In terms of the variable τ, the set of equations for γ, P1,xy and P1,yy is
as follows:

∂τγ = −2
d

a∗P∗
1,xy − ζ∗1 γ, (A11)

∂τ P∗
1,yy = Y + X0P∗

1,yy + XP∗
2,yy, (A12)

∂τ P∗
1,xy + a∗P∗

1,yy = X0P∗
1,xy + XP∗

2,yy, (A13)

where the quantities Y, X0 and X are defined by Equations (44) and (46), respectively. As
in the case of the excess granular gas, we want to solve the set of Equations (A11)–(A13) by
assuming small deviations from the steady-state solution. Thus, we write the following:

γ(τ) = γs + δγ(τ), P∗
1,yy(τ) = P∗

1yy,s + δP∗
1,yy(τ), P∗

1,xy(τ) = P∗
1xy,s + δP∗

1,xy(τ). (A14)

In the linear order in the perturbations,

ζ∗1 = ζ∗1s + ζ1δγ, Y = Ys + Yδγ, X0 = X0s + X0δγ, X = Xs + Xδγ, (A15)
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where ζ∗1s, Ys, X0s, and Xs refer to the values of these quantities in the steady state and

ζ1 =

√
2

d

(
σ12

σ2

)d−1
µ21(1 + α12)

{
(1 + θ−1

s )−1/2

2µ

[
1 − µ21

2
(1 + α12)(1 + θs)

]
+

µ2
21

2µ12
θ2

s (1 + θ−1
s )1/2(1 + α12)

}
, (A16)

Y =
3

2
√

2

(
σ12

σ2

)d−1 µ2
21

(d + 2)
(1 + α12)

2(1 + θ−1
s )1/2, (A17)

X0 = − 1√
2d(d + 2)

(
σ12

σ2

)d−1 µ2
21

µ12
(1 + θ−1

s )−1/2(1 + α12)[d + 2 − µ21(1 + α12)], (A18)

X =
1√

2d(d + 2)

(
σ12

σ2

)d−1
µ2

21(1 + θ−1
s )−1/2(1 + α12)

2. (A19)

Substitution of Equations (A14) and (A15) into Equations (A11)–(A13) and neglecting
nonlinear terms in the perturbations, after some algebra, one gets the set of linear differential
equations:

∂τ

 δγ

δP∗
1,yy

δP∗
1,xy

 = −L̃ ·

 δγ

δP∗
1,yy

δP∗
1,xy

, (A20)

where L̃ is the square matrix

L̃ =


ζ∗1s + γsζ1 0 2

d a∗s
−
(

Y + X0P∗
1,yy,s + XP∗

yy,s

)
−X0s 0

−
(

X0P∗
1,xy,s + XP∗

yy,s

)
a∗s −X0s

. (A21)

The eigenvalues of the matrix L̃ are the roots of the following secular equation:

det
(

L̃kℓ − ℓ̃δkℓ

)
= 0. (A22)

If the real parts of the eigenvalues ℓ̃ are always positive for any value of the set
(α22, α12, m1/m2, σ1/σ2), then the steady USF solution for the pressure tensor P∗

1,ij is linearly
stable.

A systematic analysis of the dependence of Re(ℓ̃i) (i = 1, 2, 3) on the parameter
space shows that the real parts of the eigenvalues are always positive. As an illustration,
Figures A2 and A3 show the α-dependence of Re(ℓ̃i), with it being quite apparent that their
real parts are positive.
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Figure A2. Plot of the real parts of the eigenvalues ℓ̃i (i = 1, 2, 3) as functions of the (common)
coefficient of restitution α22 = α12 ≡ α for the mass ratio m1/m2 = 1.5 and different values of the
diameter ratio σ1/σ2.
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Figure A3. Plot of the real parts of the eigenvalues ℓ̃i (i = 1, 2, 3) as functions of the (common)
coefficient of restitution α22 = α12 ≡ α for the diameter ratio σ1/σ2 = 2 and different values of the
mass ratio m1/m2.

Appendix B. Behavior of the Zeroth-Order Pressure Tensors near the
Steady State

In this appendix, we give the expressions of the derivatives of the zeroth-order pressure
tensors P∗

kℓ and P∗
1,kℓ with respect to a∗ near the steady state. We consider first the IMM

where the (dimensionless) elements of the pressure tensor P∗
kℓ obey the following equation:

−
(

2
d

a∗P∗
xy + ζ∗

)(
1 − 1

2
a∗

∂

∂a∗

)
P∗

kℓ+ a∗kµP∗
ℓµ + a∗ℓµP∗

kµ = −
[
ν∗η P∗

kℓ +
(

ζ∗ − ν∗η
)

δkℓ

]
, (A23)

where in the tracer limit, P∗
2,kℓ ≃ P∗

kℓ and ζ∗2 ≃ ζ∗. From Equation (A23), one gets the
following set of equations:

∂P∗
yy

∂a∗
=

2(ν∗η − ζ∗)− 2P∗
yy

(
ν∗η − ζ∗ − 2

d a∗P∗
xy

)
a∗
(

2
d a∗P∗

xy + ζ∗
) , (A24)
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∂P∗
xy

∂a∗
=

−2P∗
yya∗ − 2P∗

xy

(
ν∗η − ζ∗ − 2

d a∗P∗
xy

)
a∗
(

2
d a∗P∗

xy + ζ∗
) . (A25)

As expected, the numerators and denominators of Equations (A24) and (A25) vanish in
the steady state [(2/d)a∗P∗

xy + ζ∗ = 0]. As in the case of IHS [55], the steady-state limit of
Equations (A24) and (A25) can be evaluated by means of l’Hopital’s rule. In this case, one
achieves the following results:

Υyy = 4P∗
yy

a∗Υxy + P∗
xy

2a∗2Υxy + d
(

2ν∗η − ζ∗
) , (A26)

where Υyy ≡
(

∂P∗
yy/∂a∗

)
s

and Υxy ≡
(

∂P∗
xy/∂a∗

)
s

is the real root of the cubic equation:

2a∗4Υ3
xy + 4da∗2ν∗η Υ2

xy +
d2

2

(
4ν∗2

η + 6ζ∗ν∗η − 3ζ∗2
)

Υxy

+d2
(

ν∗η − ζ∗
)

ν∗−2
η

(
ζ∗2 − 5ζ∗ν∗η + 2ν∗2

η

)
= 0. (A27)

In the above equations, it is understood that all the quantities are computed in the
steady state.

We consider now the derivatives of the elements P∗
1,kℓ with respect to a∗. They verify

the time-dependent equation:

−
(

2
d

a∗P∗
xy + ζ∗

)(
1 − 1

2
a∗

∂

∂a∗

)
P∗

1,kℓ+ a∗kµP∗
1,ℓµ + a∗ℓµP∗

1,kµ = Yδkℓ+X0P∗
1,kℓ+XP∗

kℓ, (A28)

where we recall that the quantities Y, X0 and X for IMM are defined by Equations (44)
and (46), respectively. The derivatives of ∂a∗P∗

1,yy, ∂a∗P∗
1,xy, and ∂a∗γ can be easily obtained

from the results derived for IHS in [55] by replacing the expressions of the quantities Y, X0,
and X of IHS by their corresponding counterparts for IMM given by Equations (44) and (46),
respectively. Thus, the expressions of the derivatives ∂a∗P∗

1,xy and ∂a∗P∗
1,xy are given by

Equations (B.16) and (B.17), respectively, of [55] while the derivative ∂a∗γ is (some typos
were found in Equation (B.22) of [55] while the present paper was written; the expressions
displayed here are the corrected results) as follows:(

∂γ

∂a∗

)
s
=

Λ1

Λ2
, (A29)

where

Λ1 = d
(

1
2

a∗χ − X0

)[(
1
2

a∗χ − X0

)(
γχ − 2

d
P∗

1,xy

)
− 2

d
a∗
(

χP∗
1,xy − P∗

1,yy + XΥxy

)
+2a∗2

(
χP∗

1,yy + XΥyy

)]
, (A30)

Λ2 = d
(

1
2

a∗χ − X0

)[(
1
2

a∗χ − X0

)(
ζ∗1 +

1
2

a∗χ + γζ∗1

)
+

2
d

a∗
(

X′
0P∗

1,xy + X′P∗
xy

)]
−2a∗2

(
Y′ + X′

0P∗
1,yy + X′P∗

yy

)
. (A31)

https://doi.org/10.3390/math14010179

https://doi.org/10.3390/math14010179


Mathematics 2026, 14, 179 40 of 42

In Equations (A30) and (A31), χ = (2/d)(P∗
xy + a∗Υyy), Y′ = ∂γY, X′ = ∂γX, and

X′
0 = ∂γX0. As in the case of the excess granular gas, all the quantities appearing in

Equations (A29)–(A31) are evaluated in the steady state.
In the case of the VGS kinetic model, the expressions of the derivatives Υyy and Υxy

are given by Equations (A26) and (A27), respectively, except that ν∗η = (1 + α22)/2 + ϵ∗22
and ζ∗ must be replaced by ϵ∗22. With respect to the derivatives associated with the tracer
particles, their forms are identical to those obtained for IMM except that X = 0, and the
quantities Y and X0 are given by the following expressions:

Y =
1 + α12

2
ν∗12

[
γ + 2µ12µ21(1 − γ)

]
, (A32)

X0 = −1 + α12

2
ν∗12 − ϵ∗12. (A33)
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